
Vol.:(0123456789)1 3

Integrating Materials and Manufacturing Innovation 
https://doi.org/10.1007/s40192-022-00276-1

TECHNICAL ARTICLE

Additive Manufacturing Melt Pool Prediction and Classification 
via Multifidelity Gaussian Process Surrogates

Robert Saunders1,2   · Anna Rawlings1 · Andrew Birnbaum1 · Athanasios Iliopoulos1 · John Michopoulos1 · 
Dimitris Lagoudas2 · Alaa Elwany2

Received: 13 June 2022 / Accepted: 26 August 2022 
This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2022

Abstract
It is well known that the process parameters chosen in metal additive manufacturing (AM) are directly related to the melt 
pool dimensions, which can be related to microstructure characteristics, properties, and printability. Thus, the determina-
tion of melt pool dimensions and resulting printability, given a set of process parameters, is crucial to understanding the 
performance of AM parts. Unfortunately, experiments relating process parameters to the melt pool have a high execution 
and data collection cost. On the other hand, simulations do not suffer this cost penalty but can never be as good as the ground 
truth experiments. A number of capabilities exist to predict melt pool geometry from process parameters that range from 
highly accurate codes with long simulation times to less accurate analytical solutions that are nearly instantaneous. This 
work leverages multifidelity Gaussian process (GP) surrogates to examine how the fusion of information from different 
fidelities, including experiments, influences the resulting predictive model. Both a multifidelity GP regression and a novel 
multifidelity GP classification are examined. The multifidelity models are compared to standard GPs and a withheld set of 
test data. The results show good predictive accuracy for the melt pool width and depth, but suggest multifidelity models may 
not significantly improve classification of printability.
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Introduction

Additive manufacturing (AM) remains an area of critical 
technological and strategic importance to the US govern-
ment (USG) and its allies [1]. While AM has been actively 
researched as a science and engineering discipline for the 
past decade, its adoption as a mainstream manufacturing 
technology, particularly for metals, in practice has been 
slow, in part due to a lack of understanding of the perfor-
mance of as-built AM parts and the challenges with qualifi-
cation/certification that stem from this lack of understanding 
[2]. The Office of the President of the USA recently set out 
to address this lack of understanding in AM with AM For-
ward, a partnership between the USG and the manufacturing 

industry to conduct research to improve the performance of 
AM techniques [3]. While this effort primarily focuses on 
lowering the cost and increasing the quality and adoption of 
AM parts in industry, there are additional USG-wide efforts 
to utilize AM technologies to create a more secure and resil-
ient supply chain [4–6]. In addition to these efforts, the US 
Department of Defense has identified AM as a crucial tech-
nology needing further development for US national security 
with the ability to create lighter, stronger, and more resilient 
components to better prepare and protect Warfighters [7].

In order to improve the performance of metallic AM 
parts, the type of defects that arise during manufacturing 
and the causation mechanisms for the defects must be better 
understood [8]. The process to manufacture a metal AM part 
typically involves a metal powder being spread in a pow-
der bed or deposited through a nozzle, and then an energy 
source (such as a laser or electron beam) is used to melt 
the powder in specific locations within a layer guided by a 
CAD file [9]. The molten material then cools and solidifies 
to create the desired geometry of a layer. This process is 
repeated until a full part is complete. The repeated thermal 
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cycling of the powder and underlying solidified material in 
conjunction with the high thermal gradients and material 
phase transformation can lead to parts containing numerous 
defects that, ultimately, degrade the parts performance [8]. 
A key aspect to understanding the defects that are formed 
is understanding how the AM process parameters influence 
the resulting melt pool, or the liquid interface between the 
powder particles and the energy source [10, 11]. Too little 
energy being deposited will result in a melt pool not being 
formed, while a high energy will result in unsteady melt 
pool dynamics that can have unintended consequences [2]. 
In both cases, porosity defects will form. In the no melting 
case, a lack of fusion defect can form and lead to a lower 
effective material density part with irregular-shaped voids. 
In the high energy case, defects, such as keyholing and ball-
ing/beading, can lead to entrapped gas and again result in a 
part with a lower effective material density. In order to avoid 
these defects, the so-called printability needs to be assessed. 
Printability in this work is defined as the process param-
eter map that can tell whether or not a porosity defect (i.e., 
lack of fusion, keyholing, balling/beading) will occur for a 
given set of process parameters [12–17]. One popular way 
to asses and create this printability map is by in-situ process 
monitoring [18]. By monitoring the process and collecting 
the data, machine learning (ML) models can be trained to 
predict thermal history [19–22], melt pool size and shape 
[15], anomalies [23], and printability [16, 17]. However, this 
work involves the continued collection of experimental data, 
which can be costly and time-consuming, in order to train 
the ML models.

A less-costly alternative is to utilize one or more of the 
plethora of available modeling techniques to simulate every 
level of the AM process [24, 25]. Many of these models 
focus solely on predicting the thermal history and corre-
sponding melt pool geometry as functions of input process 
parameters [26]. These process models range from analytical 
[27]. and semi-analytical methods [28–32]. to finite element/
difference models [14, 33–39]. to multiphysics models at 
the scale of the metal powder [40–46]. They generally fall 
into a spectrum from fast and approximate (e.g., analytical 
solutions) to slow and accurate (e.g., multiphyscics finite 
element or powder-scale models). In all cases, there will be 
some level of inaccuracy and uncertainty introduced by the 
modeling assumptions with higher fidelity models gener-
ally having fewer simplifying assumptions [47]. With lower 
fidelity models, uncertainty quantification (UQ) techniques 
can be used to interrogate the model relatively easily due 
to the low data acquisition cost. With higher fidelity mod-
els, this is not practical and many researchers implement 
machine learning (ML) or surrogate modeling techniques, 
such as Gaussian process (GP) models, to conduct UQ tasks, 
such as model calibration, uncertainty propagation, or sen-
sitivity analysis [14, 48–56]. GPs, in general, are a popular 

tool to emulate AM process models as they limit the number 
of simulations required to effectively conduct UQ and can 
provide reasonably accurate approximations to the model 
they are emulating at a nearly negligible computational cost 
once trained.

A popular variation of the standard GP is the multifi-
delity GP developed by Kennedy and O’Hagan [57], com-
monly referred to as the Kennedy-O’Hagan or KOH model. 
In this framework, multiple sources of information at var-
ying degrees of fidelity can be incorporated into a single 
model. This limits the number of expensive simulations 
and/or experiments needed to build a model by leverag-
ing information from cheap low fidelity solutions to the 
same problem. One example of this is using a few experi-
ments to adjust a computer simulation [58, 59]. Recently, 
Mahmoudi et al [50]. applied this same methodology to a 
finite element (FE) AM process model to perform calibra-
tion of the model parameters and were able to achieve a high 
predictive accuracy.

In this work, a new multifidelity GP (MFGP) approach 
based on experiments and multiple fidelities of simulations 
is presented. Two MFGPs are shown, one that performs 
regression to determine melt pool dimensions and another 
that performs classification to determine printability. The 
MFGPs are trained using a combination of experiments and 
simulations for a model material of 316L stainless steel, and 
the data generation is scaled based on the fidelity (i.e., a few 
experiments, but many analytical solution data points). In 
doing, so the MFGP is made to be as efficient as possible 
when compared to a standard single fidelity GP. The remain-
der of this work will be structured as follows: “AM Pro-
cess Modeling” section overviews the AM process models 
utilized to generate data; “Eagar–Tsai Analytical Solution” 
section provides a brief overview of the MFGP regression 
along with a novel MFGP classification approach; “NRL-
Enriched Analytical Solution Method” section explains the 
data generation process from the models as well as how the 
regression and classification models are trained; “Finite 
Element Modeling” section presents the validation of the 
MFGP against a test set of experiments, demonstrates how 
different combinations of fidelities can yield the best overall 
model, and analyzes how each process model contributes 
to the overall MFGP; and finally “Experimental Data” sec-
tion summarizes the work and provides prospects for future 
directions.

AM Process Modeling

This work utilizes four different fidelity information sources 
to generate the data needed to train the MFGPs. These are, 
namely, the analytical solution of Eagar  and Tsai [27], 
the Naval Reseach Laboratory (NRL) enriched analytical 
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solution method [28, 29], a conduction-based FE model 
implemented in COMSOL Multiphysics® [60], and laser 
powder bed fusion (L-PBF) experiments. The Eagar–Tsai 
and NRL enriched analytical solution method are both 
briefly detailed below and the interested reader is referred 
to the referenced works for full details. The COMSOL FE 
model and experiments are detailed in full as they are both 
previously unpublished. The computational models are setup 
to simulate the L-PBF process with 316L stainless steel as 
used in the experiments. Additionally, each model takes as 
input the 316L material properties and three process param-
eters, namely the laser power, velocity, and spot size1. The 
boundary value problem for the simulations is such that each 
considers a semi-infinite domain where the laser source is 
far from any boundaries. The top surface is a free surface, 
and mirror symmetry is implemented where applicable for 
half of the laser source and melt pool width. These con-
ditions mimic those of the experiments where each single 
track is far from the base plate edges and, while multiple 
tracks are on a single plate, each is far from the others and a 
small dwell time is used to ensure temperature effects from 
previous tracks are not influencing the current track. Note 
that none of the simulations are specifically calibrated to the 
experiments and only use material parameters obtained from 
literature for a general 316L material. Temperature fields 
from each simulation are used to extract melt pool dimen-
sions once a steady state thermal solution is achieved. Due 
to the high data acquisition and analysis cost of the higher 
fidelity information and limitations of the lowest fidelity 
model, only single-track simulations are considered to main-
tain consistency between the fidelities.

Eagar–Tsai Analytical Solution

The Eagar–Tsai (ET) analytical solution is the lowest fidel-
ity source used in this work and calculates the temperature 
field due to a traveling Gaussian distributed heat source on a 
semi-infinite plate and uses the calculated temperature field 
to compute melt pool dimensions. The solution is based 
upon fundamentals of heat transfer, albeit with a number of 
simplifying assumptions, such as non-temperature-depend-
ent material properties and only heat conduction physics 
with no radiative or convection losses. The ET solution 
was originally developed to describe the impact of welding 
process parameters on the geometry and temperature distri-
bution of weld melt pools [61]. However, it can be readily 
applied to develop a first-order approximation for tempera-
tures in the L-BPF process since L-PBF can be thought of 

as a repetitive micro-welding process [17, 62, 63]. While the 
ET solution is not highly accurate for predicting all aspects 
of the L-PBF process, it is extremely fast and takes very little 
computational resources thus providing a good starting point 
for further analysis. A single simulation can run in seconds 
on a single i7 (tenth generation) CPU in a laptop.

NRL‑Enriched Analytical Solution Method

The NRL-enriched analytical solution method (NEASM) 
was developed by modifying the ET solution to incorporate 
several enrichments to better capture the features seen in the 
AM process. These are: 1) using the linear heat equation to 
approximate the nonlinear heat equation solution to account 
for the temperature-dependent properties, via a fixed point 
iteration, 2) using the method of images to account for finite 
domains, 3) inclusion of mass accretion by accounting for 
mass conservation, and 4) including phase transformation. 
Enrichments 1 and 4 allow for temperature-dependent mate-
rials to be included in the NEASM, while enrichments 2 and 
3 account for realistic part geometries and effects of multiple 
layers, respectively. In general, the NEASM is capable of 
predicting the thermal history of full AM part builds includ-
ing rastering within a layer and the effects of multiple layers. 
However, for this work, only single-track data are needed; 
thus, it can be assumed that boundary effects are negligi-
ble (i.e., the laser is sufficiently far from all boundaries and 
enrichment 2 is not necessary) [64]. Additionally, under cer-
tain circumstances, the NEASM can produce results with 
accuracy comparable to finite element modeling [29]. Each 
simulation in this work using the NEASM takes under 1 
minute on a single i7 (tenth generation) CPU in a laptop.

Finite Element Modeling

The finite element analysis (FEA) parametric simulation 
was implemented in COMSOL Multiphysics® 5.6 [60]. in 
conjunction with the LiveLink™ capability enabling direct 
communication between COMSOL and MATLAB® [65]. 
The MATLAB scripting capability offers the opportunity to 
automate the generation of the datasets required to construct 
the surrogate models. The developed simulation capability 
is based on an advective Eulerian approach that significantly 
reduces the computational cost as compared to a traditional 
Lagrangian approach. The solved equation expresses the 
local balance of energy and reduces to the steady-state form 
of the advective heat conduction equation:

with T the temperature, � = −k(T)∇T  , the heat flux vector 
defined by the Fourier constitutive equation, �(T) the temper-
ature-dependent density, Cp(T) the temperature-dependent 

(1)�(T)Cp(T)� ⋅ ∇T − ∇ ⋅ � = 0,

1  More specifically, spot size is used to denote the distance equiva-
lent to four standard deviations of a Gaussian beam profile, com-
monly referred to as D4�
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heat capacity, k(T) the temperature-dependent thermal con-
ductivity, � = {−v�, 0�, 0�}T the velocity vector, and v the 
velocity magnitude of the deposited beam power source in 
the x-direction (applied to the material domain, while the 
heat source is maintained fixed in space).

One realization of the discretized domain is shown in 
Fig. 1. The xz plane at y = 0 is considered a symmetry 
plane by enforcing −� ⋅ � = 0 , with � the normal vector 
of the surface. The domain is discretized with tetrahedral 
elements, utilizing the feature of COMSOL Multiphysics® 
for enabling semi-infinite domains with the intent to simu-
late an arbitrarily large geometries. A convective heat flux 
boundary condition was applied using −� ⋅ � = h(T∞ − T) 
to simulate the presence of material at the outside of these 
domains. T∞ was taken as the room temperature. The value 
of h was set by simulating a complete domain with adequate 
material, such that T∞ and T were equal, then comparing 
that simulation to a reduced domain that implemented the 
convective boundary conditions. After iterating, a value of 
h was determined that simulates the convection correspond-
ing to the case with 316L material being the medium on the 
other side of the wall. The approximate value identified was 
h = 500W∕(m2K) . It should be noted that the results of the 
simulation are very insensitive to the actual value of h since 
the infinite element domain already addresses simulating 
boundary conditions at very large distances. The deposited 
beam power was applied at the top boundary of the hexahe-
dral elements in the form of a heat flux boundary condition 
given by:

with a = 0.45 the laser coupling coefficient, P0 the laser 
power and � = {0�, 0�,−1�}T the beam orientation vector. 
The function f defines the deposited beam shape and was 
assumed to be of a Gaussian form according to:

with

where x is the vector of coordinates of each boundary point 
and � is the center of the beam application, considered here 
to be at point {0, 0, 0}T . The Gaussian distribution variance 
was assumed to be equal to d/4 with d the apparent beam 
diameter, i.e., D4� as defined previously.

One challenge with developing the automated dataset 
generation relates to the very wide extent of the parametric 
values, which entails different geometry sizes for different 
values of the parameters because of the different spread in 
temperature distribution. Since it is impossible to know a 
priori the extent of the melt pool, an iterative algorithm 
was developed to detect when the geometry needed to be 
adjusted to account for the size of the melt pool. The algo-
rithm performs the simulation using nominal values, and 
if it identifies that the width or length of the melt pool is 
very close to the boundaries, it extends the domain and exe-
cutes another simulation. The process is repeated until the 

(2)−� ⋅ � = �P0f (�, �)
�� ⋅ ��
‖�‖

,

(3)f (�, �) =
1

2��2
e
−

s2

2�2 ,

(4)s =
‖� × (� −�)‖

‖�‖
,

Fig. 1   One realization of the 
parameterized, discretized 
domain used in the COMSOL 
heat transfer simulations
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computational domain is at least twice as big as the extent 
of the melt pool in all three directions.

The simulations were performed using the temperature-
dependent material properties shown in Fig. 2. The extent 
of the melt pool in the three directions representing width, 
length, and depth were calculated by finding the extrema of 
the temperature iso-surfaces for T = Tmelt = 1660K . Three 
simulations showing temperature distributions and domain 
size changes with parameters are shown in Fig. 3. The com-
putational time for each of the simulations on a 4-core i7 
(tenth generation) laptop was at the level of 20-25s.

Experimental Data

Experiment (EXP) data used for training and testing the 
MFGP scheme are single-track, so-called “bead-on-plate”/
autogenous, experiments conducted on a GE/Concept Laser 
M2 selective laser melting (SLM) system on a 316L stain-
less steel plate [66]. The nominal processing conditions for 
the system are 900 mm/s laser velocity, 370 W laser power, 

and 160 �m laser (2� ) spot size. The minimum and maxi-
mum ranges of the system are 10-7000 mm/s, 75-400 W, and 
50-350 �m . These ranges are used to bound the data genera-
tion in the experiments as well as the other models with the 
exception that a maximum laser velocity of 2000 mm/s is 
set. This velocity was chosen as a practical maximum given 
the maximum possible power of the system i.e., without an 
increase in power, such high velocities will seldom result in 
melted material.

Melt pool width and depth were extracted from the sin-
gle-track experiments using optical microscopy. The sam-
ples were mounted and subjected to standard stainless steel 
grinding and polishing procedures (i.e., 320 grip paper, 9 �m 
diamond polishing, 3 �m diamond polishing, then 40 nm 
OP-S polishing). 10% oxalic acid electroetching at 5V for 
15s was used to reveal the melt pool. Once mounted and 
processed, optical microscopy was performed. Melt pool 
width and depth were measured from the optical images. A 
representative output image from this process is shown in 
Fig. 4a. In addition to melt pool width and depth, the melt 

Fig. 2   Temperature-dependent material properties assumed for the heat transfer problem

Fig. 3   Example temperature distributions for three different parameter combinations



	 Integrating Materials and Manufacturing Innovation

1 3

pools were visually evaluated to determine if the run was 
in keyholing or conduction mode (Fig. 4b), whether bead-
ing (Fig. 4c), or if there was lack of fusion. Note that melt 
pool depth was measured from the surface in all cases for 
consistency.

Multifidelity Gaussian Processes

The KOH model [57]. has been demonstrated to be very 
effective at multifidelity information fusion over the past 
two decades. However, it has two primary limitations. 
First, there is a linear correlation assumed between the 
higher fidelity data and the next lowest fidelity data. This 
linear correlation assumption is generally adequate but, 
in many computer models, this linear correlation only 
holds for specific ranges of the model. For instance, the 
ET model of this work always assumes conduction is the 
dominant heat transfer mechanism. When this is true, 
the ET model will likely be linearly correlated to higher 
fidelity models. However, at process parameters where 
conduction is not the primary mechanism, other models 
accounting for multiple heat transfer mechanisms could 
give a significantly different prediction that is not linearly 
correlated to the ET solution. The second limitation of the 
KOH model is that the computational complexity to train 

the model scales as O(
�∑s

t=1
nt
�3
) where s is the number of 

fidelities and nt is the number of data points at each fidel-
ity. This computational complexity can quickly become 
intractable considering that the lowest fidelity models can 
easily generate hundreds or thousands of points. However, 
both of the stated limitations have been overcome in recent 
years with Le Gratiet et al. [67, 68]. addressing the latter 
and Perdikaris et al. [69]. addressing the former. In the 
following derivations, standard GP regression and classifi-
cation theory is briefly mentioned but for complete details, 
the interested reader is directed to the book of Rasmus-
sen and Williams [70].

First, assume that there is a dataset D =
{
xxxi, yi

}
= (xxx, y) 

for i = 1,… , n with input vectors xxxi and responses yi for n 
points. These data are assumed to be generated by some 
unknown latent function f (⋅) which follows an n-dimen-
sional multivariate Gaussian distribution such that,

where ��� is the mean vector defined by the mean function 
�(xxxi) = ���i = �

[
f (xxxi)

]
 and kkk is the covariance defined by the 

covariance function k(xxxi,xxxj) = kkkij = cov
[
f (xxxi), f (xxxj)

]
 . Now, 

the unknown latent function can be assigned a Gaussian 
process prior denoted as f (⋅) ∼ GP(�(⋅), k(⋅, ⋅)) . As is com-
mon, throughout this work, it will be assumed that this and 
all other GP priors are zero mean i.e., �(⋅) = 0.

In the context of multifidelity modeling, there are now 
multiple datasets from each fidelity such that Dt = (xxxt, yt) 
for t = 1,… , s with the s-level being the highest fidelity and 
the first level being the lowest. In the KOH auto-regressive 
model, the s level are correlated as

where � is a scaling factor that linearly correlates the t and 
t − 1 fidelities and the bias of the lower fidelity is captured by 
�t(xxx) ∼ GP(0, kt(⋅, ⋅)) . As mentioned above, the construction 
of the model in this way has a cost of O(

�∑s

t=1
nt
�3
) due to 

the required inversion of the covariance matrix to compute 
the posterior. Le Gratiet et al. derived a more numerically 
efficient scheme by replacing the GP prior ft−1(xxx) with the 
corresponding posterior f ∗

t−1
(xxx) while maintaining Dt ⊆ Dt−1 . 

Since nested data (i.e., data from fidelity t is a subset of 
the points in fidelity t − 1 ) have been assumed, the poste-
rior predictive density f ∗

t−1
(xxx) is deterministic at xxx , which 

essentially decouples the MFGP problem into s standard 
GP problems. It was shown that this scheme results in the 
exact same posterior as the KOH model, while being more 
efficient (computational cost of O(

∑s

t=1

�
n3
t

�
) ) and yielding 

predictive models for each fidelity rather than only the high-
est fidelity as is the case in the KOH model.

To account for nonlinear correlations, Perdikaris  et 
al.  modified equation 6 as

(5)p(f (xxx1),… , f (xxxn)) ∼ Nn(���,kkk),

(6)ft(xxx) = �ft−1(xxx) + �t(xxx),

Fig. 4   Representative single-track experiment SEM images
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where zt−1(⋅) is an unknown function that maps the lower 
fidelity to the higher fidelity. This unknown function is 
assigned a GP prior such that zt−1(xxx) ∼ GP(0, kt(⋅, ⋅)) . By 
assigning a GP prior to zt−1(⋅) , the posterior of ft(⋅) is no 
longer Gaussian and is considered a “deep GP.” These deep 
GPs are generally very computationally complex, but can 
be made more tractable by following the scheme of Le Gra-
tiet et al.  where the prior of fidelity t − 1 is replaced by the 
posterior as

where gt(xxx) ∼ GP(0, kt((xxx, f
∗
t−1

(xxx)), (xxx�, f ∗
t−1

(xxx�)))) . This formu-
lation is made possible by the independence of zt−1(f ∗t−1(xxx)) 
and �t(xxx) as well as the fact that the sum of two GPs results 
in another GP. Perdikaris et al.  note that this formulation 
retains the equivalent Markov property of the KOH model 
and the scheme of Le Gratiet et al. . Furthermore, with cer-
tain covariance kernel choices, the formulation of Le Gra-
tiet et al.  can be obtained. In this work, the covariance func-
tion of gt takes the decomposed form of

where each kt is a valid covariance function. The covariance 
functions will take the common form of a stationary, squared 
exponential covariance as

When kt� (xxx,xxx
�) takes the form as specified, it will result in a 

nonlinear correlation, but in portions of this work, a linear 
correlation will be used for comparison and that will results 
in kt� (xxx,xxx

�) taking the form of a bias or constant kernel. The 
parameters 

{
�t, �1,t,… , �p,t

}
 for t = 1,… , s make up the 

set of so-called hyper-parameters, which allow “tuning” of 
the correlation between data points and fidelities, and are 
learned from the data at each fidelity along with the poste-
rior of the previous fidelity.

Note that up this point, no differentiation has been made 
between regression and classification. In both settings, the 
unknown latent function has the form as given and the pos-
terior distribution can be found as

In the standard GP regression problem and the nonlinear 
auto-regressive GP (NARGP) regression with t = 2 , the like-
lihood is Gaussian and along with the assumed Gaussian 
priors, the posterior predictive distribution is Gaussian, and 

(7)ft(xxx) = zt−1(ft−1(xxx)) + �t(xxx),

(8)ft(xxx) = zt−1(f
∗
t−1

(xxx)) + �t(xxx) = gt(xxx, f
∗
t−1

(xxx)),

(9)ktg = kt� (xxx,xxx
�) ⋅ ktf (f

∗
t−1

(xxx), f ∗
t−1

(xxx�)) + kt� (xxx,xxx
�),

(10)kt(xxx,xxx
�) = �t exp

(
−
1

2

p∑

k=1

�k,t(xk − x�
k
)2

)
.

(11)

p(f ∗
t
(xxx∗)) = ∫ p(ft(xxx

∗, f ∗
t−1

(xxx∗))|yt,xxxt,xxx∗)p(f ∗t−1(xxx
∗))dxxx∗.

the integral can be computed analytically. However, NARGP 
regression with t > 2 and in all GP classification, the poste-
rior is not Gaussian and alternative methods must be used 
to compute the integral to obtain the posterior predictive 
distribution.

Regression

Even though the posterior for the NARGP with more 
than two levels is not Gaussian, the process to compute 
it is still quite simple. First, each level of the model is 
trained individually. At the first level, this corresponds to 
a standard GP regression with D1 = (xxx1, y1) . Subsequent 
levels require modifying the training dataset such that 
Dt = ((xxxt, f

∗
t−1

(xxxt)), yt) . Acquiring the posterior f ∗
t−1

(xxxt) does 
not require approximating the integral of the previous fidel-
ity, because the posterior of fidelity t − 1 is deterministic at 
all points xxxt due to the assumed nested structure of the data. 
This training process is repeated for all fidelities until the 
s-levels are trained. Once trained, the posterior predictive 
density at a new point xxx∗ can be found at all fidelities t > 2 
by using Monte Carlo (MC) integration of equation 11. For 
fidelity 1 and 2, the posterior can be analytically obtained 
since it is Gaussian. Note that using MC integration requires 
the propagation of all MC samples from the previous fidel-
ity to the current fidelity, while MC sampling again at the 
current fidelity for each of the MC samples generated at 
the previous fidelity. In doing so, the number of MC sam-
ples required to approximate the posterior scales exponen-
tially and at the highest fidelity requires 

(
nMC

)s−2 total MC 
samples.

Classification

Unlike GP regression, the posterior for GP classification 
always requires approximation methods to evaluate the pos-
terior. In GP classification, the latent function is considered 
a nuisance function where its value is never observed and, 
once a value is determined, it is transformed through a non-
linear warping to make predictions of observations. For the 
case of binary classification, which this work will focus on, 
this results in �(xxx) ≜ p(y = 1|xxx) = Φ(f (xxx)) , where �(⋅) is a 
deterministic function and, in this work, Φ(⋅) is the standard 
Normal cumulative distribution function i.e., a probit func-
tion is used for the warping. The probit function has the pur-
pose of warping the latent function from [−∞,∞] to [0, 1], 
which is then used as a prediction of the class probability. 
Since this work focuses only on binary classification, the 
data likelihood will take the form of a Bernoulli distribution. 
[71]. For the case of a single fidelity classifier, methods to 
approximate the posterior have been well-studied and the 
approximation can be done via Laplace approximation or 
expectation propagation (EP) [70]. or MC methods such as 
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Markov chain Monte Carlo (MCMC). However, multifidel-
ity GP classification has not been as well-studied. Recently, 
Sahli Costabal et al. [72]. developed and demonstrated a 
multifidelity GP classifier that was based on the KOH model 
and used MCMC to approximate the posterior. Likewise, 
Klyuchnikov and Burnaev [73]. presented a Laplace approx-
imation method for Gaussian process classification with two 
fidelities. However, this again was based on the KOH model 
using a linear correlation structure.

In this work, a novel approach to MFGP classification is 
taken. In general, all equations derived up to this point still 
hold. However, each dataset Dt = (xxxt, yt) now has labels yt 
take the form of binary classes 0 or 1, rather than continuous 
variables. This allows the predictive posterior for the data 
to be written as

One can note that this posterior is the same as the posterior 
given in Rasmussen and Williams [70], except generalized 
to multiple fidelities and including a dependence (via equa-
tion 11) on the previous fidelity posterior prediction. By 
maintaining the assumptions given above, the problem of 
MFGP classification is reduced to fitting s single fidelity 
classifiers as developed by Le Gratiet et al. [67, 68]. and 
allows the nonlinear correlation structure developed by Per-
dikaris et al. [69]. to be maintained i.e., this approach is 
nearly identical to the NARGP regression above. The pri-
mary differences between the NARGP regression and clas-
sification are in training. First, to train each fidelity classifier, 
one must implement an approximation method as discussed 
above. In this work, that approximation is made using EP. 
Using an approximate inference method like EP is useful 
here as it allows the computational efficiency to be main-
tained. If implementing an MC type approach, sampling s 
fidelities can quickly become cumbersome and costly. From 
here, the approach to training is exactly as it is in the case 
of regression where each fidelity is trained recursively and 
the posterior of the latent function is used as an input to the 
next fidelity. It is important to emphasize here that, while the 
latent function in classification is unobserved, it does pro-
vide information about the underlying relationship between 
the data. If posterior predictive distribution for the data is 
used here as the input the next fidelity, the warping func-
tion will tend to map points that could be very far apart so 
that they appear close together and related. Once the mod-
els are trained, MC integration is performed exactly as is 
done in the regression case except posteriors for both the 
latent function and the data are needed. The latent function 
posterior samples are propagated to the next fidelity, while 
the posterior of the data is the prediction of the GPC for the 
current fidelity.

(12)

�∗
t
(xxx∗) ≜ p(y∗ = 1|yt,xxxt,xxx∗) = � Φ(f ∗

t
(xxx∗))p(f ∗

t
(xxx∗))dxxx∗.

Data Generation and Model Training

In order to generate data to train the MFGP regression and 
classification, each of the four information sources detailed 
above must be sampled. The laser power (P), velocity (V), 
and spot size (S) are varied, while the melt pool length (L), 
width (W), depth (D), conduction/keyhole mode class (K), 
beading class (B), and lack of fusion class (F) are output. 
The ranges for the input parameters are based on the experi-
mental setup and are detailed in “Experimental Data” sec-
tion. Due to experimental limitation, melt pool length is not 
measured and is only available for simulations i.e., the three 
lowest fidelities. Conversely, the simulations do not con-
tain sufficient physics to produce conduction/keyhole mode 
classifications. In lieu of direct class outputs for the simula-
tions, empirical measures based on melt pool dimensions 
will be used to generate the needed output [14]. Since these 
empirical measures require melt pool dimensions, obtained 
through observation or regression, classifiers built using 
the empirical measures will be referred to as regression-
based classifiers. In this work, keyholing will correspond 
to a melt pool width to depth ratio of W∕D < 1.5 . Addi-
tionally, lack of fusion and beading classification will be 
predicted as L∕W > 2.3 and D∕t < 1 , respectively, where t 
is the powder layer thickness, which will be 25 �m . The set 
of these 3 classes will determine the so-called “printability” 
and give a predicted process parameter space where “good” 
(i.e., defect free) printing should occur. The framework for 
MFGP regression and classification is shown in Fig. 5.

In the case of a single fidelity data source, data are typi-
cally generated via a space-filling design of experiments 
(DoE) method such as Latin hypercube sampling (LHS). 

Fig. 5   MFGP regression and classification framework. Process 
parameter inputs are shown at the left, these are fed into the NARGP 
regression (possibly after some data screening, discussed later) and 
classification, which are used to create predictions of melt pool 
dimensions and printability. For regression, melt pool length is only 
trained for NARGP models without EXP. For classification, empirical 
classes are used for all simulation data
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However, simply sampling each of the thermal models used 
here from the different fidelities would result in multiple 
space filling designs that would almost certainly not be 
nested, thus violating the assumptions of the theory above. 
With multifidelity modeling becoming more common in 
the past decade, numerous space filling nested DoE (nDoE) 
methods have been developed [67, 68, 74–77]. In this work, 
the relatively simple scheme of Le Gratiet et al. [67, 68]. is 
chosen. In this nDoE method, a space filling LHS design 
of ns points is first created for the highest fidelity model. 
Subsequently, another LHS design is constructed for fidel-
ity s − 1 with ns−1 points. From the ns−1 points, the points 
that are closest in space to the higher fidelity ns points are 
removed and replaced by the points ns . In this work, a simple 
Euclidean distance measure is used but any desired distance 
measure could equivalently be implemented. The process 
as described is recursively applied until LHS designs are 
generated and modified for all s-fidelities. For this work, 
the ET model is sampled 500 times, the NEASM sampled 
200 times, FE sampled 100 times, and experiments (hence-
forth referred to as EXP) sampled 50 times. For training, all 
data are used except 15 experiments, which were randomly 
selected from the 50 available. The 15 experiments not used 
for training are used for validation/testing of the trained GPs.

The NARGP regression and classification as well as the 
nDoE are all implemented in Python 3.6.12. The NARGP 
regression and classification are based on Emukit (https://​
emukit.​github.​io/) [78], although the implementation has 
been modified to perform classification and cross-validation 
(although not used for this work) in the regression setting.

Results and Discussion

In this work, the NARGP will be trained on all combina-
tions of fidelities with 2 or more fidelities included. In addi-
tion, each of the combinations will be trained once with a 
nonlinear correlation between fidelities and a second time 
assuming a linear correlation between fidelities. This will 
result in 22 trained NARGP models (Table 1), which will be 
compared to standard GPs trained on a single fidelity. Each 
of the trained models will first be compared to the experi-
ment test set and discussed, followed by a comparison of 
which fidelities included in the NARGP result in the best 
models for the least computational cost will be discussed.

Experiment Validation

Regression

The purpose of regression is to determine steady-state melt 
pool dimensions as a function of the AM process param-
eters. Since a classification is being trained to screen for 

defect inducing parameters and the purpose of the regression 
model is to predict good melt pool dimensions that can be 
propagated to subsequent models, the regression model can 
be trained in one of two ways. First, utilizing all data includ-
ing data which produces melt pools that exhibit keyholing, 
beading, and/or lack of fusion. Or second, screen the training 
data beforehand and only training the regression model on 
the most relevant good print data. In the former case, more 
data will be available to train the model, but the data may 
be unnecessary since some regions will never be queried 
for predictions and won’t necessarily reduce the uncertainty 
in relevant good regions. For the sake of comparison, mod-
els are trained using both data sets in this work. In both 
instances, a GP will also be trained on the highest fidelity 
model used in the NARGP. Melt pool length is not included 
here as melt pool length measurements were not able to be 
collected in the experiments. Mean absolute percent error 
(MAPE) and coefficient of determination ( R2 ) are used to 
evaluate the error of the trained model on the test data. The 
way in which MAPE is formulated can sometimes be prob-
lematic as it can result in erroneous, infinite, or undefined 
values [79]. As such, both R2 and MAPE are used initially 
with R2 being used as a verification of the MAPE results. 
The results of training can be seen in Fig. 6a and c and 

Table 1   Multifidelity model combinations with corresponding labels 
of 1-22. Each design uses a binary labeling where a 1 indicates inclu-
sion in the model and 0 exclusion. The nonlinear column specifies if a 
nonlinear correlation was used (1) or was not used (0)

Nonlinear EXP FE NEASM ET

1 1 1 1 1 1
2 0 1 1 1 1
3 1 0 1 1 1
4 0 0 1 1 1
5 1 1 0 1 1
6 0 1 0 1 1
7 1 0 0 1 1
8 0 0 0 1 1
9 1 1 1 0 1
10 0 1 1 0 1
11 1 0 1 0 1
12 0 0 1 0 1
13 1 1 0 0 1
14 0 1 0 0 1
15 1 1 1 1 0
16 0 1 1 1 0
17 1 0 1 1 0
18 0 0 1 1 0
19 1 1 0 1 0
20 0 1 0 1 0
21 1 1 1 0 0
22 0 1 1 0 0

https://emukit.github.io/
https://emukit.github.io/
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Fig. 6b and d for the models trained on all data and models 
trained on only good print data, respectively. Note, that in 
all cases, only test data that does not produce a defect will be 
used to evaluate the model. Since the regression model will 
only be used to predict good prints, these filtered test data 
will be the most relevant to evaluate true model accuracy. 
The filtered data set has seven test points remaining of the 
original 15.

From Fig. 6a and c, it can be seen that the GP can 
achieve a minimum error of 11.9% for the melt pool 
width and 33.7% for the depth when it is trained using 
the FE data. In general, the NARGP achieves a substan-
tial improvement in accuracy, using both the MAPE and 
R2 metrics, compared to the GP and in the worst cases, 
achieves a similar level of accuracy. In the best case sce-
nario the NARGP can predict the melt pool width with 
4.5% error and the depth with 33.7% error. For the melt 
pool width, the best model combinations were the EXP 
and FE with a nonlinear correlation structure, while for 
the depth, the best was any model trained using FE with-
out experiments. The R2 metric predicts a maximum melt 
pool width R2 of 0.991 for the NARGP and 0.847 for the 
GP with a maximum melt pool depth R2 of 0.889 for the 
NARGP and 0.72 for the GP. This again demonstrates that 
the NARGP produces a better model than the GP. The best 
melt pool width model using R2 was again a combination 

of EXP and FE with a nonlinear correlation structure. For 
melt pool depth, the R2 and MAPE metrics differ on which 
combination of models produce the best prediction indi-
cating that there may be a few bad predictions of the melt 
pool depth that are skewing the MAPE metric. The high-
est R2 value attained for melt pool depth was 0.889 for the 
combination of EXP and FE with a nonlinear correlation 
structure.

For the GP only fitted to good data (Fig. 6b and 6 d), 
a similar level of accuracy as the GP trained on all data 
is achieved. The GP achieves a minimum error of 47.2% 
for the melt pool width and 33.9% for the depth when it is 
trained using the EXP data. As before and as expected, the 
NARGP improves on or maintains the accuracy and R2 val-
ues achieved by the GP alone with the best case predicting 
the melt pool width with 15.6% error ( R2 = 0.931) using 
EXP and ET and a nonlinear correlation and the melt pool 
depth with 11.5% error ( R2 = 0.848) using all fidelities and 
a nonlinear correlation. Similarly, a melt pool depth error of 
11.6% ( R2 = 0.861) can be achieved with the same fidelities 
as the previous except excluding the ET data. Interestingly, 
the best R2 metric for melt pool depth of 0.891 was achieved 
using EXP and ET and a nonlinear correlation, which as 
before demonstrates that the best melt pool width and depth 
models determined by R2 were produced using the same 
combination of models.

Fig. 6   MAPE and R2 evaluated on test set melt pool width (W) and depth (D) data for the NARGPs of Table 1 and GPs
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Regardless of the removal of data before training, the 
NARGP produces better results than a GP trained on a 
single fidelity. Furthermore, the NARGP demonstrates its 
value over traditional multifidelity GP modeling approaches 
as the nonlinear correlation between fidelities produces the 
models with the highest accuracy. As one might expect, the 
NARGP including experiments produces the models with 
the lowest error and highest R2 values. However, this is not 
the case for the GP where the model using FE data alone 
can produce a more accurate model (in percent error) than 
the one using experiments. This further highlights the need 
for multifidelity modeling to effectively increase the amount 
of information available for model training because, intui-
tively, experiments should always be used when available as 
they represent the ground truth. However, due to their high 
acquisition cost, only a limited number of experiments may 
be available and when taken alone may not produce the most 
accurate model as has been demonstrated.

Looking at the difference in the best cases when using all 
data versus only good data, it can be noted that the single 
best melt pool width prediction is obtained using all data, 
while the best melt pool depth prediction is obtained when 
using the screened good data considering MAPE alone as 
a metric. When R2 is used an additional metric, the same 
conclusion can be drawn that the screened data gener-
ally produces a better model but the difference in the best 
result is not as noticeable e.g., the best R2 for all data is 
0.889 and for good data only, it is 0.891. This phenomenon 
can be attributed to how defects show up in the melt pool 
width and depth predictions. Melt pool width alone does 
not give a strong indication of a defect, unlike melt pool 
depth which can be a good indicator of keyholing and lack 
of fusion. Therefore, the melt pool width can be predicted 
more accurately when more data is available during training 
as is typically the case with GP-based models. For melt pool 
depth, the inclusion of data with defects and the fusion of 
information from models without the physics necessary to 
produce those defects tends to result in a model that is less 
accurate than a model trained on a consistent set of data i.e., 
one where simulations and experiments are both operating 
under the same physics. A similar trend on the difficulty of 
predicting melt pool depth can be seen in Tapia et al. [51].

In the best cases, an error rate of around 5-10% could be 
achieved in prediction (slightly under for 5 % for melt pool 
width and slightly over 10% for melt pool depth). Likewise, 
a very strong correlation can be achieved for both the melt 
pool width ( R2 = 0.991) and depth ( R2 = 0.891). Depend-
ing on the application this could be an acceptable level of 
accuracy given the trade-off with computational time. Some 
recent works [50, 53, 55, 63]. have demonstrated similar or 
slightly better accuracy on test data after training a GP model 
and using it to calibrate a physics-based model. Besides the 
obvious drawback of the increased computational time to 

query the model in comparison to the nearly negligible time 
to query a GP, this method has an additional drawback of a 
needing to use Bayesian method to perform the calibration. 
These Bayesian methods, while becoming more common, 
can be costly and require some subject matter expertise to 
obtain convergence. The method implemented here uses a 
more naive approach. While each model has the same gen-
eral material of 316L stainless steel, none of the models 
have been specifically calibrated to produce the same results. 
Thus, for a new material system, one could simply obtain 
data and/or model parameters from literature or utilize exist-
ing models to generate a new predictive model without the 
need to perform a new calibration.

There are a number of possible improvements that could 
be made to the NARGP to perform regression, such as the 
inclusion of simulation data from a multiphysics model, but 
one of the most notable improvements would be to change 
the NARGP from having multiple independent outputs to 
being a multivariate or multioutput model [50]. The process 
to convert the NARGP to a multivariate model would be rel-
atively straightforward, though still beyond the scope of this 
work. Since the NARGP essentially only requires the itera-
tive training of multiple GPs, rather a single multifidelity GP, 
the process to convert to a multivariate model would only 
entail converting each GP into a multivariate GP and train-
ing the NARGP as usual. Converting to a multivariate model 
could accomplish two objectives. First, it could potentially 
improve the regression model by leveraging information 
from both width and depth simultaneously while training. 
Secondly, by having a multivariate model, Bayesian methods 
could be used to impute the missing melt pool length data 
when it is unavailable. The imputation of the missing data 
would be possible without a multivariate model, but with 
a multivariate model, the coupling of the melt pool length, 
width, and depth at lower fidelities could greatly improve 
the imputation. In addition to the improvements discussed 
on the GP modeling methodology, additional improvements 
may be possible by including additional process parameter 
inputs. However, given the accuracy achieved using only 
power, velocity, and spot size, it is unlikely that additional 
parameters would dramatically improve the results.

Classification

The purpose of classification is to determine the material 
printability map, in terms of porosity defect type, based on 
the AM process parameters. Unlike regression, classification 
will always be performed on all available data. For the sake 
of this work, classification will be conducted in a number 
of ways for comparison purposes. First, it is performed as 
described by “Classification” section for each of the three 
defect classes, where each class is binary 1 for defect and 0 
if that defect is not present. A second approach is to group 
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all the defects into a binary problem of defect (1) or no 
defect (0) if one or more of the defects is present. Finally, 
an approach similar to previous approaches [14, 17]. where a 
trained regression model and empirical measures, as detailed 
above, are used to predict if a defect will be present and what 
that defect will be. As the beading metric requires melt pool 
length to approximate, any NARGP or GP that contains EXP 
will use the melt pool width and depth as normal but use 
melt pool length predictions based on the next lowest fidelity 
in the NARGP (e.g., an NARGP trained with EXP, FE, and 
NEASM will have melt pool length NARGP trained only 
on FE and NEASM and GP trained only on FE while EXP 
would be included in NARGP and GP for width and depth 
training). To evaluate each of the classification models, a 
balanced accuracy score (BAS) is used. The BAS is a stand-
ard measure of classification accuracy except each class is 
weighted by the number of samples in that class. The BAS 
is used in this work since the number of defects in the test 
set for each defect type is relatively low (3 of each type over 
the 15 total points in the test set). Note that the BAS is 1 for 
a perfect classifier and is bounded between 0 and 1.

The classification results when predicting each defect 
individually are shown in Fig. 7. In the case of beading 
(Fig. 7a), a maximum BAS of 0.875 is achieved and is 
obtained using the regression-based NARGP and GP. The 
NARGP is only able to gain this level of accuracy using 
only the NEASM and ET models with a linear correlation. 

The GP on the other hand obtains this accuracy for a model 
trained on the NEASM. A confusion matrix for this case 
is shown in Table 2. Interestingly, the NARGP and GP 
classifiers can only obtain approximately 0.8 BAS. This is 
obtained for a number of combinations but most notably, 
none of the combinations involve using experiments. For 
keyholing (Fig. 7b), a maximum BAS of 0.83 is obtained 
with the NARGP classifier as well as regression-based clas-
sifier. For the classifier, this BAS is achieved using EXP, FE, 
and ET runs with a linear correlation and for the regression, 
it is achieved with EXP and NEASM runs using a nonlinear 
correlation. The confusion matrices are identical for the two 
best classifiers and one is show in Table 3. Interestingly, 
this maximum BAS regression case does not correspond 
to the regression results that best predict melt pool width 
and depth. In the case of lack of fusion (Fig. 7c), there a 
number of models that result in perfect predictions from all 
classifiers. The most notable result is with the NEASM and 

Fig. 7   Classification BAS for three defect types for the NARGP and GP classifiers and NARGP and GP regression-based classifiers

Table 2   Confusion matrix for the best beading classification (GP 
regression-based classifier trained using NEASM)

No predicted defect Predicted defect

No actual defect 9 3
Actual defect 0 3
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ET models combined or simply the NEASM, regardless of 
which method is used, can result in the highest BAS. Since 
the best cases result in perfect predictions, confusion matri-
ces are not shown as they are simple matrices with zero as 
the off-diagonal components.

Again, note that the previous classifiers were tested on a 
set of 15 points where only 3 points for each of the defects 
were present in the 15. This results in highly skewed classes 
and makes determining the true model accuracy harder. By 
combining all defects into a single class, the skew becomes 
much less noticeable as there are seven defects of the 15 
points. Combining the classes also reduces training time as 
only a single model needs to be trained for the classifier. For 
the regression-based classifier, three models are still trained 
since all melt pool dimensions are still needed to make 
classifications before being combined into a single class. 
The results of the binary defect classification are shown in 
Fig. 8. The results show a highest possible BAS of around 
0.8 for the regression-based classifiers. These occur for GPs 
trained on experiment data and NARGP and GPs trained 
on NEASM and ET and NEASM, as was seen before. As 
before, each of these best models results in an identical con-
fusion matrix and one example is shown in Table 4.

A few interesting points can be noted about both the com-
bined and individual defect classifiers. First, it appears that 
in many cases, the regression-based classifier (i.e., empirical 
classification measures from melt pool dimensions) shows 
similar or better performance than the regular classifiers. 

Furthermore, the NARGP classifier does not appear to out-
perform a standard GP classifier in most cases. This is in 
contrast to the regression where the NARGP could greatly 
outperform the standard GP. One possible explanation for 
the lack of performance of the NARGP classifier is that 
the BAS is only indicating the mean performance of the 
classifier and not the full probability space. In testing of 
the NARGP on a pedagogical example, it was noted that 
the NARGP classifier produced fewer correct classifica-
tions but the overall probability map was closer to the true 
boundary used to generate the data. It is possible that this 
is again occurring here, however, without a concrete means 
to assess this, the BAS and similar metrics are the only 
option to evaluate a model. Comparing the two approaches 
to classification, grouped versus individual, there seems to 
be little impact on the BAS results. In the individual cases, 
the NARGP and GP classifiers both perform around 0.8, 
which is close to the highest level of achievable accuracy in 
the grouped cases. However, this conclusion is somewhat 
superfluous as the regression-based classifier, using empiri-
cal measures derived from melt pool dimensions, appears to 
outperform the GP classifier, and the regression approach 
only makes predictions without considering individual ver-
sus grouped classes during training. An interesting point that 
was mentioned earlier is that a GP classifier trained on the 
NEASM as the highest or only fidelity tends to produce the 
best or nearly the best results in all cases except individual 
keyholing predictions, where the experiments produce the 

Table 3   Confusion matrix for the best keyholing classification 
(NARGP regression-based classifier trained using EXP and NEASM 
with a nonlinear correlation)

No predicted defect Predicted defect

No actual defect 12 0
Actual defect 1 2

Fig. 8   Grouped binary classi-
fier BAS for NARGP and GP 
classifiers and NARGP and GP 
regression-based classifiers

Table 4   Confusion matrix for the best classification using the 
grouped binary classifier (GP regression-based classifier trained using 
EXP)

No predicted defect Predicted defect

No actual defect 5 2
Actual defect 1 7
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best model likely because the experiments are the only fidel-
ity with the necessary physics to capture keyholing.

As with the regression there are some improvement 
that could be made to the classification. The most notable 
improvement would be to change to a multiclass classifier. 
This would nullify the need to decide between a binary 
defect/no-defect class or training individual classifiers. Much 
like the regression, changing to a multiclass classifier would 
be as simple as replacing the GP classifier implemented in 
this work with a new variant. The difficulty in changing 
to a multiclass classifier in the NARGP context is that the 
most common method to perform multiclass GP classifi-
cation is via Bayesian methods, which become impractical 
when training multiple models sequentially. However, some 
recent works have begun to develop and implement non-
Bayesian approaches to multiclass GP classification, which 
could be implemented in the NARGP framework. As with 
the NARGP regression problem, further improvements may 
be realized in the classification if additional input parameters 
are used that may help determine whether a defect will be 
induced or not. However, in the absence of additional data, 
especially from experiments, it is uncertain whether adding 
more inputs will improve the classification models or not.

Process Model Importance

In the previous section, each of the 22 trained NARGPs was 
examined and compared individually to the test set of experi-
ments. Now, the NARGP results will be used to determine 
what fidelities included in the results tend to result in a bet-
ter performing model. This is done by grouping the MAPE 
and BAS for each NARGP that includes each fidelity. This 
is further split by separating the linear versus nonlinear cor-
relation models. Box plots of the data generated by this pro-
cess are shown in Fig. 9 for the melt pool width and depth 
MAPE (for models with all data used for training and only 
good data used) and in Fig. 10 for the grouped BAS from the 
NARGP classifier and NARGP regression-based classifica-
tion. For brevity, only the grouped classification results are 
examined, and R2 is omitted since it generally agrees with 
the MAPE metric.

In the case of the regression results for melt pool width, 
it can be noticed that a nonlinear correlation shows a wider 
spread of MAPE values, but tend to produce a better result 
in both cases of training with all data or only good data. 
In the case of the linear correlation, the melt pool width 
MAPE does not tend to change much as different fideli-
ties are included in the NARGP, whereas for the nonlinear 
correlation, the MAPE does tend to slightly decrease as 
higher fidelity data is added to the NARGP as one would 

Fig. 9   Box plots showing MAPE ranges for NARGP models which included the given fidelity, both, with and without a nonlinear correlation



Integrating Materials and Manufacturing Innovation	

1 3

expect. The results on melt pool width with all data versus 
good data also reinforce the conclusions above that a low 
MAPE can be achieved with a model trained on all data. 
With the exception of a couple outliers, the models trained 
on all data also show a lower variance than the models 
trained on good data only.

For melt pool depth, the conclusions from the previ-
ous section still hold, in that NARGP models trained on 
good data tend to produce lower error rates than a model 
trained on all data. Furthermore, the models trained using 
experiments result in the lowest MAPE values with the 
lowest variance. In the case of melt pool depth, the vari-
ance of linear correlation versus nonlinear correlation, 
as well as variance changes with fidelity, do not appear 
to change significantly until experiments are included. 
This, as stated, reduces the variance and tends to give the 
best results. Unlike melt pool width, the melt pool depth 
does not seem to improve significantly with higher fidel-
ity data. The best model is any model multifidelity model 
that includes experiments. A similar conclusion can be 
made about melt pool width.

Unlike regression, the classification shows consistent 
BAS values regardless of NARGP fidelities or correlation 
used. In fact, there is a slight upward trend in the BAS for 
the NARGP classifier when lower fidelities are included. A 
similar trend can be noted for the regression-based classi-
fier, although the trend is not as prevalent. The trends shown 
in the box plots offer additional insight into the previous 
conclusion about the regression-based classification outper-
forming the standard classification. The NARGP classifica-
tion, as detailed in this work, does tend to perform as well 
or better then the regression-based version. However, the 
highest BAS obtained is with the regression-based models. 
The classification method presented in this work also shows 
a lower variance, which could be a desirable feature that 
makes selection of specific fidelity data sets less important.

Model Selection

Having several fidelities of data available to make the best 
model is obviously ideal, but training all combinations of 
models and generating data from so many sources is gener-
ally not practical. Here, some best practices are discussed 
that result in generating data from the fewest fidelities that 
result in the best trained models. This is done for regression 
only models, classification only models, and then models for 
classification and regression.

For regression, two models will likely need to be trained 
regardless; one for melt pool width on all available data 
and another for melt pool depth where the data has been 
screened a priori to select only data which does not produce 
defects. While training two models is not ideal, the benefits 
could be worthwhile since a melt pool width prediction of 
<5% and depth prediction of 11% is possible. Additionally, 
the NARGP is implemented with a maximum likelihood 
approach so training of a model is relatively fast. The draw-
back to achieve the level of accuracy shown is that at least 
three fidelities of data would be required, namely EXP, FE, 
and NEASM. This could be a significant cost to acquire 
data from those sources and may not even be possible given 
that enriched analytical solutions are not widely available. 
Alternatively, a model using only EXP and ET data can be 
trained which results in a greatly reduced data acquisition 
cost with only a slight accuracy penalty, achieving 12.3% 
width and 13.6% error rates for the melt pool width and 
depth, respectively. While this level of error is somewhat 
high, it could serve as a good first order approximation and 
does not require specific calibration of the ET parameters 
using Bayesian methods.

In the case of classification, recommendations are much 
more difficult to make as clear trends are not seen as has 
been demonstrated in the previous sections. Using the 
NEASM model for any of the four classification methods 
shown (NARGP and GP classification and regression-based 
classification) appears to result in the best classifier for both 

Fig. 10   Grouped defect BAS box plots for fidelities included in the NARGP model for models with and without nonlinear correlations
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individual and grouped classification except for keyholing 
predictions. Only models containing experiments are able 
to accurately predict keyholing to some extent. For the 
grouped classification, similar conclusions can be drawn. 
A GP regression-based classification with the NEASM or 
EXP provides the highest BAS around 0.8. Interestingly, 
when combined in a multifidelity model, the result does not 
improve and tends to get slightly worse at 0.72 BAS.

Taking everything together, an NARGP model containing 
EXP, NEASM, and ET seems to be able to provide the best 
predictive model. The experiments improve keyholing and 
melt pool width and depth predictions, while the NEASM 
and ET have the purpose of predicting beading, lack of 
fusion, and/or grouped classification and add additional 
information to supplement the limited experiment data. 
While the resulting model would not be the best possible 
model, it would balance the data generation and model crea-
tion processes. Additionally, it would only require training 
a single NARGP regression model. While using the regres-
sion-based classification resulted in the best overall results, 
using the NARGP classification does have the potential to 
produce equivalent results to the regression-based version 
with less dependence on which fidelities are selected as was 
shown in the previous section.

Conclusions

This work has presented an analysis and discussion on pre-
dicting and classifying AM melt pools using multifidelity 
GP surrogates. The work considered four common sources 
of information at different fidelities, from analytical to 
experimental, and combined that information in a NARGP 
regression and novel classification models. The models 
were trained on a representative set of data and compared 
to a test set of experiments. All combination of fidelities 
were trained and compared to a standard GP. The NARGP 
regression demonstrated superior results over standard GP 
regression and require no model calibration i.e., Bayesian 
methods. Furthermore, certain combinations of models, 
namely the experiments and Eagar–Tsai model, were able 
to produce an accurate model which balanced data genera-
tion cost with attainable model accuracy. Depending on 
the fidelity of information available, a model was able to 
be produced, which matched or exceeded the performance 
of existing GP modeling and calibration approaches. For 
classification, results using both grouped and ungrouped 
classes were examined along with regression-based classi-
fication using empirical measures and how that compared 
to using binary classification methods. The results showed 
that for ungrouped classification, experiments were neces-
sary to accurately predict keyholing, as one would expect, 
but using only the NEASM or a multifidelity model with 

the NEASM was sufficient to predict beading and lack of 
fusion. In the grouped classification setting, similar results 
were seen. In both cases, the regression-based classification 
was shown to produce a singular best model for classifying 
printability, but typical classification methods were able to 
produce more consistent results that were less dependent 
on the fidelities included in the model. While the NARGP 
classification approaches were able to produce some models 
that exceeded the performance of a standard GP, the results 
were not consistent. It was postulated that while the NARGP 
did not improve significantly on the classification accuracy 
for the available test set, it likely improved the predicted 
probability space.
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