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ABSTRACT

Process-structure-property (PSP) relational linkages are necessary for designing, developing,

and tailoring a material to exhibit desired properties, and ultimately, performance for a targeted ap-

plication. Establishing PSP linkages typically involves building and testing materials from a given

process until the desired properties are achieved. However, the process of generating and represent-

ing the data needed to establish these PSP linkages is often time intensive as it requires extensive

experimentation and/or complex, multi-scale simulations. These PSP linkages are of particular

interest for additive manufacturing (AM) processes due to the plethora of process parameters in-

volved that are significantly more influential in the localization of microstructural morphologies,

and the associated material properties, compared to those of conventional manufacturing processes.

With sufficient understanding of PSP linkages, their control within AM can produce parts with pre-

viously unattainable properties, including spatial distributions of those properties at will.

The present works establishes and demonstrates a Gaussian process (GP) based framework to

emulate experiments and simulations of AM PSP linkage components. The goal of this framework

is to construct predictive surrogate models that significantly reduce the time to sample PSP link-

ages while maintaining a high predictive accuracy. The framework will consist of three primary

components: 1) a multi-fidelity GP linking process parameters to printability and melt pool charac-

teristics, 2) a multi-output GP linking the melt pool to microstructure statistics, and 3) a functional

GP relating microstructure statistics to the mechanical properties. The application of the described

framework will demonstrate a novel linkage directly from process parameters to microstructure

properties. The results demonstrate approximately 95% accuracy in predicting mechanical proper-

ties for previously unseen process parameters that have been propagated through the PSP linkage.

The use of GPs in the workflow limits the number of experiments/simulations needed, yields a

reduced cost for acquisition of new predictions, and allows for a Bayesian treatment of the PSP

linkages.
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1. INTRODUCTION*

1.1 Additive Manufacturing

Additive manufacturing (AM) is an advanced manufacturing process whereby topological in-

formation from 3D models is translated into a real part by joining material, typically in a layer-

by-layer fashion. Much of the work in AM has been accomplished in the past two decades but

the ideas used in AM can be dated to as far back as the 1860s.[1] AM is referred to by many

names in the literature including, but not limited to, 3D printing, rapid prototyping, and layer

manufacturing.[2, 3, 1, 4] The general AM process has, however, been specifically defined by

ISO/ASTM standards to be the “process of joining materials to make parts from 3D model data,

usually layer upon layer, as opposed to subtractive manufacturing and formative manufacturing

methodologies", which gives the area of AM a very broad scope. Likewise, by the same stan-

dards, major AM processes can be generalized into seven categories: fused deposition modeling

(FDM), inkjet printing (IJP), laminated object manufacturing (LOM), laser engineered net shaping

(LENS), stereolithography (SLA), selective laser sintering (SLS), and three-dimensional print-

ing (3DP).[2, 5] As with the naming convention for AM, the naming of the processes can vary

widely[1], where, for example, technologies that all use laser processing for metallic materials

can be referred to by different names depending on how the powder is fed and melted.[6, 7, 8]

AM can utilize a vast range of materials from plastics to metals to ceramics to foods and other

biological/polymeric materials.[9, 10, 11, 12, 4] Typically, certain classes of materials are printed

with certain method (e.g., metals with SLS or LENS, plastics with FDM, etc.) but this is not a

strict guideline and as research in the area expands, materials able to be printed using a given

AM method will also expand.[13, 11] A summary of the classification of AM processes can be

seen in figure 1.1 and the focus of this work will primarily be on powder bed fusion (PBF) and in

particular, DMLS and SLM technologies for metallic materials.

*Portions of this chapter have been reprinted with permission from R. N. Saunders, “Metamaterials Using Additive
Manufacturing Technologies,” Def. Tech. Inf. Cent., no. NRL/MR/6353–20-10,057, 2020.
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Figure 1.1: Classification of AM processes by ASTM International. Reprinted from [14].

While AM has been around for decades, the technology remains an area of critical technologi-

cal and strategic importance to the United States government (USG) and its allies.[15] AM has been

actively researched for the past decade, but the adoption of AM, particularly of metals, in practice

has been slow, in part due to a lack of understanding of the performance of as-built AM parts and

the challenges with qualification/certification that stem from this lack of understanding.[6] The

Office of the President of the Unites States recently set out to address this lack of understanding in

AM with AM Forward, a partnership between the USG and the manufacturing industry to conduct

research to improve the performance of AM techniques.[16] While this effort primarily focuses on

lowering the cost and increasing the quality and adoption of AM parts in industry, there are addi-

tional USG-wide efforts to utilize AM technologies to create a more secure and resilient supply
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chain.[17, 18, 19] In addition to these efforts, the US Department of Defense has identified AM as

a crucial technology needing further development for US national security with the ability to create

lighter, stronger, and more resilient components to better prepare and protect Warfighters.[20]

AM has gained popularity in both experimental [6, 8] and computational [21] domains recently

as it has the potential to remove many of the design constraints imposed by traditional manufac-

turing processes and address the issues highlighted above. This can, in part, be attributed to the re-

ducing cost of programmable controllers, lasers, and computer-aided design (CAD) software.[14]

The process of creating a part to be built by AM begins with 3D solid modeling as a CAD file

which is then sliced into many discrete layers that are used as inputs to the AM machine to build

the part. The largely digital workflow of the AM process allows for significant design and geo-

metric flexibility with high dimensional accuracy. The AM process is also cost efficient as there

is no need for assembly of parts and there is very little waste material.[14, 13] Additionally, AM

processes can be scaled to print parts that range from the nano/micrometer scale [22, 23, 24] to the

scale of meters.[25, 26]

The two most popular categories of metal AM are powder bed fusion and directed energy de-

position. These processes typically involve a metal powder being spread or sprayed then a laser

or electron beam is used to melt the powder in specific locations within a layer.[14] The molten

material then cools and solidifies to create the desired geometry of a layer. This process is repeated

until a full part is complete. The repeated thermal cycling of the powder and underlying solid-

ified material in conjunction with the high thermal gradients is known to create microstructures

that can be vastly different from conventionally manufactured components.[6, 27] Additionally,

the AM process can lead to parts containing numerous defects.[8] Thus, it is critical to understand

and control the AM process in order to create high quality, defect-free microstructures with desir-

able properties.[28] The foundation of this is to understand how AM process parameters influence

the resulting melt pool and how that then influences the microstructure and resulting mechanical

properties.[29]
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1.2 Process-Structure-Property Relational Linkages

The process used to manufacture a material governs its morphological structure, which in turn

drives the values and spatial distributions of the properties of the processed material and conse-

quently its performance. Process-structure-property (PSP) relational linkages are necessary for

designing, developing, and tailoring a material to exhibit desired properties, and ultimately perfor-

mance, for a targeted application.[30] Establishing PSP linkages typically involves building and

testing materials from a given process until the desired properties are achieved. However, the

process of generating and representing the data needed to establish these PSP linkages is often

difficult as the process is somewhat slow and expensive so it is challenging to obtain sufficient data

using experimental methods alone.[31] An alternative to these experiments is to leverage one of

numerous simulation capabilities.[32, 33, 34, 35, 21, 36] While these simulations can reduce the

data collection burden, high fidelity simulations can still be expensive and low fidelity simulations

can generate large amounts of data that present analysis and management difficulties.

One of the most prominent, emerging fields that call for PSP linkages is AM.[37, 38, 39, 28] As

stated above, the texture morphologies produced by AM, particularly in metals at the microscale,

can vastly differ from their conventionally manufactured counterparts. These differences often

lead to undesired (or unexpected to say the least) properties in the finished part. With adequate

understanding of PSP linkages in AM, these differences can be used to enhance the resulting

properties to previously unattainable levels [27]. As with conventional materials, many works

have attempted to understand PSP relational linkages in AM using experiments [40] and high-

fidelity, multi-scale simulations [34, 35], which can achieve high accuracy predictions. While

these simulations are generally less costly than their corresponding experiments, they can still

have long run times, especially with high-fidelity, multi-scale simulations that provide the most

physically consistent and accurate results. As a consequence of their high computational cost and

high accuracy, these simulations are well suited gain increased insight into the underlying physics

of the problem, but are not well suited generate large quantities of simulation results required for

problems in optimization and uncertainty quantification (UQ) [41] nor problems in online, real
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time production updating.[42] This challenge can be addressed through proper use of materials

informatics and machine learning (ML) [37, 38, 43].

1.3 Machine Learning for AM and PSP Linkages

Recent advances in the field of data science and data analytics have made managing, interpret-

ing, and extracting information from “big data" a more tractable activity.[44, 45, 46, 47, 48] The

process of applying data science principles to materials science and engineering is referred to as

materials informatics [49, 50, 51, 52] and typically involves the use of machine learning (ML)

and artificial intelligence (AI) techniques [51, 46, 48]. The advancement and adoption of mate-

rials informatics has provided notable potential to streamline and accelerate the determination of

process-structure (PS) [53], structure-property (SP) [54, 55, 56], and even full PSP [57] linkages in

conventionally manufactured materials. The extension of these principles to AM is a natural one

and, as one could expect, ML is being leveraged extensively in AM.[58, 59, 60, 61, 62]

One prominent use of ML in AM is in-situ process monitoring.[63] By monitoring the pro-

cess and collecting the data, ML models can be trained to predict thermal history and possible

defect formation (i.e., printability), and update the process to create high quality builds with de-

sired properties or performance.[64, 65, 66] However, this work involves the continued collection

of experimental data, which can be costly and time consuming, in order to train the ML models. A

less-costly alternative is to use utilize one or more of the plethora of available modeling techniques

that have been developed to simulate every level of the AM process.[35, 21] However, these models

generally fall into one of two paradigms: fast and approximate or slow and accurate. In all cases,

there will be some level of inaccuracy and uncertainty introduced by the modeling assumptions

with more accurate models generally having fewer assumptions.[67] In the case of lower fidelity

models, ML methods may not be necessary as the models can be interrogated relatively easily due

to the low data acquisition cost but these models will, of course, have a lower accuracy. Thus,

it is desirable to utilize higher fidelity models to the maximum extent. However with higher fi-

delity models, this can be prohibitively costly. As such, many authors implement ML or surrogate

models, such as Gaussian process (GP) models, to interrogate the physics-based model, quantify
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uncertainty, and calibrate the model parameters.[68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78] In doing

so, the accuracy of the high fidelity model can be mostly preserved while the cost to acquire new

(interpolated) data is reduced significantly. While GP models do make assumptions about the nor-

mality of the underlying data distribution, they allow ML models with relatively high accuracy to

be trained with only a small data set. Furthermore during the pre-processing steps of training, the

application of appropriate data transformations can result in output data that approximately follows

a standard Normal distribution.

There are a significant number recent articles which discuss how AM PSP experiment and

simulation capabilities can all be linked together using ML.[34, 8, 79, 80] However, in practice

and to the authors’ knowledge, only Wang et al. [75] have successfully demonstrated a full ML

framework for PSP linkages in AM. In their work, the authors create Kriging surrogate models of

thermal finite element (FE), phase field (PF), and fast Fourier transform (FFT) crystal plasticity

finite element (CPFE) models then adjust those models using experiment data and propagate un-

certainty through the surrogate models. The authors show a single demonstrative example using

Ti-6Al-4V fabricated with selective electron beam melting (SEBM) of how uncertainty can propa-

gate through the system and affect mechanical property predictions. While the authors demonstrate

good validation scores for the thermal surrogate model, no information is presented about the ac-

curacy of the microstructure and mechanical models. Likewise, no information is given about the

number or type of experiments used to adjust the surrogate models. Regardless, a more desirable

ML framework would not necessitate adjust of surrogates by experiments after the surrogate has

been trained.

1.4 Overview

As such, this work will demonstrate a Gaussian process (GP) based framework to create PSP

linkages in AM. The focus here will be on the laser powder bed fusion (L-PBF) process using

316L stainless steel, but the framework will be developed in such a way that it is applicable to

other AM processes and material systems. The ML-based PSP linkages in this work will largely

be based on mechanistic models [81] and, as a result, GPs are utilized since they are well suited to
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operate with small datasets that will come from mechanistic models and experiments in AM.[82]

This will be done in four stages. First, chapter 2 will show the development of multi-fidelity

GP (MFGP) surrogates for classifying “printability" and then predicting (via regression) the melt

pool dimensions for “good" prints from the AM process parameters. Following this, chapter 3

will describe a method to use the predicted melt pool geometry to drive a cellular automata finite

element (CAFE) model. From the CAFE model, microstructure statistics such as grain size, shape,

and orientation can be extracted and used to create a multi-output GP that links the melt pool to

microstructure statistics. In chapter 4, the microstructure statistics will be related to microstructure

mechanical properties using a functional GP (fGP). This fGP will be trained using crystal plasticity

finite element (CPFE) data and have the ability to predict the full stress-strain history for a given

microstructure rather than simple, scalar quantities, such a yield strength or hardening modulus.

Finally in chapter 5, the linking of the developed surrogate models will be demonstrated. An

overview of the framework is shown in figure 1.2. In each chapter, a brief overview of the literature

in that modeling area will be given followed by a presentation of physics-based modeling and GP

surrogate modeling methods used, results, and a summary. Chapter 6 will provide an overall

summary of what has been accomplished and future direction for the linking, use, and extension

of the developed PSP surrogate models.

Figure 1.2: Relational AM process-structure-property surrogate framework being developed.
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2. AM PROCESS MODELING SURROGATE

2.1 Introduction

In order to improve the performance of AM parts, particular metallic parts, the type of defects

that arise during manufacturing and the reason for the defects must be better understood.[8] A

key aspect to understanding the defects that are formed is understanding how the AM process

parameters influence the resulting melt pool, or the liquid interface between the powder particles

and the energy source.[29, 83] Too little energy being deposited will result in a melt pool not being

formed, while a high energy will result in unsteady melt pool dynamics that can have unintended

consequences.[6] In both cases, porosity defects will occur. In the no melting case, a lack of fusion

defect can form and lead to a lower density part with irregular-shaped voids from unmelted powder.

In the high energy case, defects, such as keyholing and balling/beading, can lead to entrapped gas

and again result in a part with a lower density. In order to avoid these defects, the so-called

printability needs to be assessed. Printability in this work is defined as the the process parameter

map that can tell whether or not a porosity defect (i.e., lack of fusion, keyholing, balling/beading)

will occur for a given set of process parameters.[84, 64, 73, 65, 66, 85]

Many of the developed AM modeling capabilities focus solely on predicting the thermal history

and corresponding melt pool geometry as functions of input process parameters.[86] These process

models range from analytical [87] and semi-analytical methods [88, 89, 90, 91, 92] to finite ele-

ment/difference models [93, 94, 95, 96, 97, 98, 99, 73] to multi-physics models at the scale of the

metal powder [100, 101, 102, 103, 104, 105, 106]. GPs, as discussed, are a popular tool to emulate

AM process models as they limit the number of simulations required and can provide accuracy

comparable to the model they are emulating at a nearly negligible computational cost.[71, 73, 83]

A popular variation of the standard GP is the multi-fidelity GP (MFGP) developed by Kennedy

and O’Hagan [107], commonly referred to as the Kennedy-O’Hagan or KOH model. In this frame-

work, multiple sources of information at varying degrees of fidelity can be incorporated into a
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single model. This limits the number of expensive simulations and/or experiments needed to build

a model by leveraging information from cheap low fidelity solutions to the same problem. One

example of this is using a few experiments to adjust a computer simulation.[108, 109] Recently,

Mahmoudi et al. [70] applied this same methodology to a finite element (FE) AM process model to

perform calibration of the model parameters and were able to achieve a high predictive accuracy.

In this chapter, an MFGP scheme that fuses information from experiments and multiple fi-

delities of simulations is shown. Two MFGPs are shown, one that performs regression to deter-

mine melt pool dimensions and another that performs classification to determine printability. The

MFGPs are trained using a combination of experiments and simulations for a model material of

316L stainless steel, and the data generation is scaled based on the fidelity (i.e., a few experiments,

but many analytical solution data points). In doing, so the MFGP is made to be as efficient as

possible when compared to a standard single fidelity GP. The remainder of this chapter will be

structured as follows: section 2.2 overviews the AM process models utilized to generate data; sec-

tion 2.3 provides a brief overview of the MFGP regression along with a novel MFGP classification

approach; section 2.4 explains the data generation process from the models as well as how the

regression and classification models are trained; section 2.5 shows the validation of the MFGP

against a test set of experiments, demonstrates how different combinations of fidelities can yield

the best overall model, and analyzes how each process model contributes to the overall MFGP; and

finally section 2.6 summarizes the process surrogate model.

2.2 AM Process Modeling

This work utilizes 4 different fidelity information sources to generate the data needed to train

the MFGPs. These are, namely, the analytical solution of Eager and Tsai [87], the Naval Research

Laboratory (NRL) enriched analytical solution method [88, 89], a conduction-based FE model im-

plemented in COMSOL, and laser powder bed fusion (L-PBF) experiments. The Eager-Tsai and

NRL enriched analytical solution method are both briefly detailed below and the interested reader

is referred to the referenced works for full details. The COMSOL FE model and experiments are

detailed in full as they are both previously unpublished. The computational models are setup to
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simulate the L-PBF process with 316L stainless steel as used in the experiments. Additionally,

each model takes as input the 316L material properties and 3 process parameters, namely the laser

power, velocity, and spot size1. Note that none of the simulations are specifically calibrated to the

experiments and only use material parameters obtained from literature for a general 316L material.

Temperature fields from each simulation are used to extract melt pool dimensions once a steady

state thermal solution is achieved. Due to the high acquisition cost of the higher fidelity informa-

tion and limitations of the lowest fidelity model, only single-track simulations are considered to

maintain consistency between the fidelities.

2.2.1 Eager-Tsai Analytical Solution

The Eager-Tsai (ET) analytical solution is the lowest fidelity source used in this work and cal-

culates the temperature field due to a traveling Gaussian distributed heat source on a semi-infinite

plate and uses the calculated temperature field to compute melt pool dimensions. The solution is

based upon fundamentals of heat transfer, albeit with a number of simplifying assumptions, such

as non-temperature dependent material properties and only heat conduction. The ET solution was

originally developed to describe the impact of welding process parameters on the geometry and

temperature distribution of weld melt pools.[110] However, it can be readily applied to develop a

first order approximation for temperatures in the L-BPF process since L-PBF can be thought of as

a repetitive micro-welding process.[111, 85, 112] While the ET solution is not highly accurate for

predicting all aspects of the L-PBF process, it is extremely fast and takes very little computational

resources thus providing a good starting point for further analysis. A single simulation can run in

seconds.

2.2.2 NRL Enriched Analytical Solution Method

The NRL Enriched analytical solution method (NEASM) was developed by modifying the ET

solution to incorporate several enrichments to better capture the features seen in the AM process.

These are: 1) using the linear heat equation to approximate the non-linear heat equation solution

1More specifically, spot size is used to denote the distance equivalent to four standard deviations of a Gaussian
beam profile, commonly referred to as D4σ
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via fixed point iteration, 2) using the method of images to account for finite domains, 3) inclusion

of mass accretion by accounting for mass conservation, and 4) including phase transformation.

Enrichments 1 and 4 allow for temperature-dependent materials to be included in the NEASM

while enrichments 2 and 3 account for realistic part geometries and effects of multiple layers,

respectively. In general, the NEASM is capable of predicting the thermal history of full AM part

builds including rastering within a layer and the effects of multiple layers. However, for this work,

only single-track data is needed thus it can be assumed that boundary effects are negligible (i.e., the

laser is sufficiently far from all boundaries and enrichment 2 is not necessary).[113] Additionally,

under certain circumstances, the NEASM can produce results with accuracy comparable to finite

element modeling.[89] Each simulation in this work using the NEASM takes under 1 minute.

2.2.3 Finite Element Modeling

The finite element analysis (FEA) parametric simulation was implemented in COMSOL Mul-

tiphysics ® 5.6 [114] in conjunction with the LiveLink™ capability enabling direct communication

between COMSOL and MATLAB®[115]. The MATLAB scripting capability offers the opportu-

nity to automate the generation of the datasets required to construct the surrogate models. The de-

veloped simulation capability is based on an advective Eulerian approach that significantly reduces

the computational cost as compared to a traditional Lagrangian approach. The solved equation ex-

presses the local balance of energy and reduces to the advective heat conduction equation in the

form:

ρ (T )Cp (T )u · ∇T −∇ · q = 0, (2.1)

with T the temperature, q = −k (T )∇T , the heat flux vector defined by the Fourier constitutive

equation, ρ (T ) the temperature dependent density, Cp (T ) the temperature dependent heat capac-

ity, k (T ) the temperature dependent thermal conductivity, u = {−vi, 0j, 0k}T the velocity vector,

and v the velocity magnitude of the deposited beam power source in the x-direction.
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Figure 2.1: One realization of the parameterized, discretized domain used in the COMSOL heat
transfer simulations.

One realization of the discretized domain is shown in figure 2.1. The xz plane at y = 0 is

considered a symmetry plane by enforcing−n·q = 0, with n the normal vector of the surface. The

domain is discretized with tetrahedral elements utilized the feature of COMSOL Multiphysics® for

enabling semi-infinite domains with the intent to simulate an arbitrarily large geometry with a finite

domain. A convective heat flux boundary condition was applied using −n · q = h(T∞ − T ) to

simulate the presence of material at the outside of these domains. T∞ was taken as the room

temperature. The value of h was identified after trial and error in a manner that simulates the

convection as 316L material was the medium on the other side of the wall. The approximate value

identified was h = 500W/(m2K). It should be noted that the results of the simulation are very

insensitive to the actual value of h since the infinite element domain already addresses simulating

boundary conditions at very large distances. The deposited beam power was applied at the top

boundary of the hexahedral elements in the form of a heat flux boundary condition given by:

− n · q = αP0f (O, e)
|e · n|
‖e‖

, (2.2)
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with a = 0.45 the laser coupling coefficient, P0 the laser power and e = {0i, 0j,−1k}T the beam

orientation vector. The function f defines the deposited beam shape and was assumed to be of a

Gaussian form according to:

f (O, e) =
1

2πσ2
e−

s2

2σ2 , (2.3)

with

s =
‖e× (x−O)‖

‖e‖
, (2.4)

where x is the vector of coordinates of each boundary point and O is the center of the beam

application, considered here to be at point {0, 0, 0}T . The Gaussian distribution variance was

assumed to be equal to d/4 with d the apparent beam diameter (i.e., D4σ as defined previously).

One challenge with developing the automated dataset generation relates to the very wide extent

of the parametric values, which entails different geometry sizes for different values of the param-

eters because of the different spread in temperature distribution. Since it is impossible to know a

priori the extent of the melt pool, an iterative algorithm was developed to detect when the geom-

etry needed to be adjusted to account for the size of the melt pool. The algorithm performs the

simulation using nominal values, and if it identifies that the width or length of the melt pool is very

close to the boundaries, it extends the length of the domain and executes another simulation. The

process is repeated until the computational domain is at least twice as big as the extent of the melt

pool in all three directions.
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(a) Conductivity (b) Density (c) Heat Capacity

Figure 2.2: The temperature dependent material properties assumed for the heat transfer problem.

The simulations were performed using the temperature dependent material properties shown in

figure 2.2. The extent of the melt pool in the three directions representing width, length, and depth,

were calculated by finding the extrema of the temperature iso-surfaces for T = Tmelt = 1660K.

Three simulations showing temperature distributions and domain size changes with parameters are

shown in figure 2.3. The computational time for each of the simulations on a 4-core laptop was at

the level of 20-25s.
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(a) v = 105mm/s, P0 =
396W, d = 92µm

(b) v = 150mm/s, P0 =
257W, d = 252µm

(c) v = 956mm/s, P0 = 398W, d = 58µm

Figure 2.3: Example temperature distributions for three different parameter combinations.

2.2.4 Experimental Data

Experiment data used for training and testing the MFGP scheme are single-track experiments

conducted on a GE/Concept Laser M2 selective laser melting (SLM) system on a 316L stainless

steel plate.[116] The single-tracks were processed directly on the 316L plate. The nominal pro-

cessing conditions for the system are 900 mm/s laser velocity, 370 W laser power, and 160 µm

laser spot size. The minimum and maximum ranges of the system are 10-7000 mm/s, 75-400 W,

and 50-350 µm. These ranges are used to bound the data generation in the experiments as well

as the other models with the exception that a maximum laser velocity of 2000 mm/s is set. This

velocity was chosen as a practical maximum given the maximum possible power of the system

(i.e., without an increase in power, such high velocities will seldom result in melted material).

Melt pool width and depth were extracted from the single-track experiments using optical mi-

croscopy. The samples were mounted and subjected to standard stainless steel grinding and pol-

ishing procedures (i.e., 320 grip paper, 9 µm diamond polishing, 3 µm diamond polishing, then
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4 nm OP-S polishing). 10% oxalic acid electroetching at 5V for 15s was used to reveal the melt

pool. Once mounted and processed, optical microscopy was performed. Melt pool width and depth

were extracted from the optical images. A representative output image from this process is shown

in figure 2.4a In addition to melt pool width and depth, the melt pools were visually evaluated

to determine if the run was in keyholing or conduction mode (figure 2.4b), whether beading (fig-

ure 2.4c), or if there was lack of fusion. Note that melt pool depth was measured from the surface

in all cases for consistency.

(a) Measurements of melt pool width and depth.

(b) Melt pool image
demonstrating keyholing

(c) Melt pool image
demonstrating beading

Figure 2.4: Representative single-track experiment SEM images.

2.3 Multi-fidelity Gaussian Processes

The KOH model [107] has been demonstrated to be very effective at multi-fidelity informa-

tion fusion over the past two decades. However, it has two primary limitations. First, there is a
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linear correlation assumed between the higher fidelity data and the next lowest fidelity data. This

linear correlation assumption is generally adequate but, in many computer models, this linear cor-

relation only holds for specific ranges of the model. For instance, the ET model of this work

always assumes conduction is the dominant heat transfer mechanism. When this is true, the ET

model will likely be linearly correlated to higher fidelity models. However, at process parameters

where conduction is not the primary mechanism, other models accounting for multiple heat trans-

fer mechanisms could give a significantly different prediction that is not linearly correlated to the

ET solution. The second limitation of the KOH model is that the computational complexity to train

the model scales asO((
∑s

t=1 nt)
3
) where s is the number of fidelities and nt is the number of data

points at each fidelity. This computational complexity can quickly become intractable considering

that the lowest fidelity models can easily generate hundreds or thousands of points. However, both

of the stated limitations have been overcome in recent years with Le Gratiet et al. [117, 118] ad-

dressing the latter and Perdikaris et al. [119] addressing the former. In the following derivations,

standard GP regression and classification theory is briefly mentioned but for complete details, the

interested reader is directed to the book of Rasmussen and Williams [120].

First, assume that there is a dataset D = {xxxi, yi} = (xxx, y) for i = 1, . . . , n with input vectors

xxxi and responses yi for n points. These data are assumed to be generated by some unknown latent

function f(·) which follows an n-dimensional multivariate Gaussian distribution such that,

p(f(xxx1), . . . , f(xxxn)) ∼ Nn(µµµ,kkk), (2.5)

where µµµ is the mean vector defined by the mean function µ(xxxi) = µµµi = E [f(xxxi)] and kkk is the

covariance defined by the covariance function k(xxxi,xxxj) = kkkij = cov [f(xxxi), f(xxxj)]. Now, the un-

known latent function can be assigned a Gaussian process prior denoted as f(·) ∼ GP(µ(·), k(·, ·)).

As is common, throughout this work it will be assumed that this and all other GP priors are zero

mean (i.e., µ(·) = 0).

In the context of multi-fidelity modeling, there are now multiple datasets from each fidelity
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such that Dt = (xxxt, yt) for t = 1, . . . , s with the s-level being the highest fidelity and the first level

being the lowest. In the KOH auto-regressive model, the s level are correlated as

ft(xxx) = ρft−1(xxx) + δt(xxx), (2.6)

where ρ is a scaling factor that linearly correlates the t and t − 1 fidelities and the bias of the

lower fidelity is captured by δt(xxx) ∼ GP(0, kt(·, ·)). As mentioned above, the construction of the

model in this way has a cost of O((
∑s

t=1 nt)
3
) due to the required inversion of the covariance

matrix to compute the posterior. Le Gratiet et al. derived a more numerically efficient scheme

by replacing the GP prior ft−1(xxx) with the corresponding posterior f ∗t−1(xxx) while maintaining

Dt ⊆ Dt−1. Since nested data ((i.e., data from fidelity t is a subset of the points in fidelity t − 1))

have been assumed, the posterior predictive density f ∗t−1(xxx) is deterministic at xxx, which essentially

decouples the MFGP problem into s standard GP problems. It was shown that this scheme results

in the exact same posterior as the KOH model, while being more efficient (computational cost of

O(
∑s

t=1 (n3
t ))) and yielding predictive models for each fidelity rather than only the highest fidelity

as is the case in the KOH model.

To account for non-linear correlations, Perdikaris et al. modified equation 2.6 as

ft(xxx) = zt−1(ft−1(xxx)) + δt(xxx), (2.7)

where zt−1(·) is an unknown function that maps the lower fidelity to the higher fidelity. This

unknown function is assigned a GP prior such that zt−1(xxx) ∼ GP(0, kt(·, ·)). By assigning a

GP prior to zt−1(·), the posterior of ft(·) is no longer Gaussian and is considered a “deep GP".

These deep GPs are generally very computationally complex, but can be made more tractable by

following the scheme of Le Gratiet et al. where the prior of fidelity t−1 is replaced by the posterior

as

ft(xxx) = zt−1(f
∗
t−1(xxx)) + δt(xxx) = gt(xxx, f

∗
t−1(xxx)), (2.8)
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where gt(xxx) ∼ GP(0, kt((xxx, f
∗
t−1(xxx)), (xxx′, f ∗t−1(xxx

′)))). This formulation is made possible by the

independence of zt−1(f ∗t−1(xxx)) and δt(xxx) as well as the fact that the sum of two GPs results in

another GP. Perdikaris et al. note that this formulation retains the equivalent Markov property of

the KOH model and the scheme of Le Gratiet et al.. Furthermore, with certain covariance kernel

choices, the formulation of Le Gratiet et al. can be obtained. In this work, the covariance function

of gt takes the decomposed form of

ktg = ktρ(xxx,xxx
′) · ktf (f ∗t−1(xxx), f ∗t−1(xxx

′)) + ktδ(xxx,xxx
′), (2.9)

where each kt is a valid covariance function. The covariance functions will take the common form

of a stationary, squared exponential covariance as

kt(xxx,xxx
′) = ηt exp

(
−1

2

p∑
k=1

θk,t(xk − x′k)2
)
. (2.10)

When ktδ(xxx,xxx
′) takes the form as specified, it will result in a nonlinear correlation, but in portions

of this work, a linear correlation will be used for comparison and that will results in ktδ(xxx,xxx
′)

taking the form of a bias or constant kernel. The parameters {ηt, θ1,t, . . . , θp,t} for t = 1, . . . , s

make up the set of so-called hyper-parameters, which allow “tuning" of the correlation between

data points and fidelities, and are learned from the data at each fidelity along with the posterior of

the previous fidelity.

Note that up this point, no differentiation has been made between regression and classification.

In both settings, the unknown latent function has the form as given and the posterior distribution

can be found as

p(f ∗t (xxx∗)) =

∫
p(ft(xxx

∗, f ∗t−1(xxx
∗))|yt,xxxt,xxx∗)p(f ∗t−1(xxx∗))dxxx∗. (2.11)

In the standard GP regression problem and the non-linear auto-regressive GP (NARGP) regression

with t = 2, the likelihood is Gaussian and along with the assumed Gaussian priors, the poste-
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rior predictive distribution is Gaussian and the integral can be computed analytically. However,

NARGP regression with t > 2 and in all GP classification, the posterior is not Gaussian and alter-

native methods must be used to compute the integral to obtain the posterior predictive distribution.

2.3.1 Regression

Even though the posterior for the NARGP with more than two levels is not Gaussian, the

process to compute it is still quite simple. First, each level of the model is trained individually.

At the first level, this corresponds to a standard GP regression with D1 = (xxx1, y1). Subsequent

levels require modifying the training dataset such that Dt = ((xxxt, f
∗
t−1(xxxt)), yt). Acquiring the

posterior f ∗t−1(xxxt) does not require approximating the integral of the previous fidelity, because the

posterior of fidelity t − 1 is deterministic at all points xxxt due to the assumed nested structure of

the data. This training process is repeated for all fidelities until the s-levels are trained. Once

trained, the posterior predictive density at a new point xxx∗ can be found at all fidelities t > 2 by

using Monte Carlo (MC) integration of equation 2.11. For fidelity 1 and 2, the posterior can be

analytically obtained since it is Gaussian. Note that using MC integration requires the propagation

of all samples from the previous fidelity to the current fidelity while sampling at the current fidelity.

In doing so, the number of samples required to approximate the posterior scales exponentially and

at the highest fidelity requires (nMC)s total samples.

2.3.2 Classification

Unlike GP regression, GP classification always requires approximation methods to evaluate

the posterior. In GP classification, the latent function is considered a nuisance function where

its value is never observed and, once a value is determined, it is transformed through a nonlinear

warping to make predictions of observations. For the case of binary classification, which this

work will focus on, this results in π(xxx) , p(y = 1|xxx) = Φ(f(xxx)), where π(·) is a deterministic

function and, in this work, Φ(·) is the standard Normal cumulative distribution function (i.e., a

probit function is used for the warping). The probit function has the purpose of warping the

latent function from [−∞,∞] to [0, 1], which is then used as a prediction of the class probability.
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Since this work focuses only on binary classification, the data likelihood will take the form of a

Bernoulli distribution.[121] For the case of a single fidelity classifier, methods to approximate the

posterior have been well studied and the approximation can be done via Laplace approximation or

expectation propagation (EP) [120] or MC methods such as Markov chain Monte Carlo (MCMC).

However, multi-fidelity GP classification has not been as well studied. Recently, Sahli Costabal et

al. [122] developed and demonstrated a multi-fidelity GP classifier that was based on the KOH

model and used MCMC to approximate the posterior. Likewise, Klyuchnikov and Burnaev [123]

presented a Laplace approximation method for Gaussian process classification with two fidelities.

However, this again was based on the KOH model using a linear correlation structure.

In this work, a novel approach to MFGP classification is taken. In general, all equations derived

up to this point still hold. However, each dataset Dt = (xxxt, yt) now has labels yt take the form of

binary classes 0 or 1, rather than continuous variables. This allows the predictive posterior for the

data to be written as

π∗t (xxx
∗) , p(y∗ = 1|yt,xxxt,xxx∗) =

∫
Φ(f ∗t (xxx∗))p(f ∗t (xxx∗))dxxx∗. (2.12)

One can note that this posterior is the same as the posterior given in Rasmussen and Williams [120],

except generalized to multiple fidelities and including a dependence (via equation 2.11) on the

previous fidelity posterior prediction. By maintaining the assumptions given above, the problem of

MFGP classification is reduced to fitting s single fidelity classifiers as developed by Le Gratiet et

al. [117, 118] and allows the nonlinear correlation structure developed by Perdikaris et al. [119] to

be maintained (i.e., this approach is nearly identical to the NARGP regression above). The primary

differences between the NARGP regression and classification are in training. First, to train each

fidelity classifier, one must implement an approximation method as discussed above. In this work,

that approximation is made using EP. Using an approximate inference method like EP is useful here

as it allows the computational efficiency to be maintained. If implementing an MC type approach,

sampling s fidelities can quickly become cumbersome and costly. From here, the approach to
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training is exactly as it is in the case of regression where each fidelity is trained recursively and the

posterior of the latent function is used as an input to the next fidelity. It is important to emphasize

here that, while the latent function in classification is unobserved, it does provide information

about the underlying relationship between the data. If posterior predictive distribution for the data

is used here as the input the the next fidelity, the warping function will tend to map points that

could be very far apart so that they appear close together and related. Once the models are trained,

MC integration is performed exactly as is done in the regression case except posteriors for both the

latent function and the data are needed. The latent function posterior samples are propagated to

the next fidelity, while the posterior of the data is the prediction of the GPC for the current fidelity.

2.4 Data Generation & Model Training

In order to generate data to train the MFGP regression and classification, each of the four infor-

mation sources detailed above must be sampled. The laser power (P ), velocity (V ), and spot size

(S) are varied while the melt pool length (L), width (W ), depth (D), conduction/keyhole mode

class (K), beading class (B), and lack of fusion class (F ) are output. The ranges for the input

parameters are based on the experimental setup and are detailed above in section 2.2.4. Due to ex-

perimental limitation, melt pool length is not measured and is only available for simulations (i.e.,

the 3 lowest fidelities). Conversely, the simulations do not contain sufficient physics to produce

conduction/keyhole mode classifications. In lieu of direct class outputs for the simulations, empiri-

cal measures based on melt pool dimensions will be used to generate the needed output.[73] In this

work, keyholing will correspond to a melt pool width to depth ratio of W/D < 1.5. Additionally,

lack of fusion and beading classification will be predicted as L/W > 2.3 and D/t < 1, respec-

tively, where t is the powder layer thickness, which will be 25 µm. The set of these 3 classes will

determine the so-called “printability" and give a predicted process parameter space where “good"

(i.e., defect free) printing should occur. The framework for MFGP regression and classification is

shown in figure 2.5.
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Figure 2.5: MFGP regression and classification framework. Process parameter inputs are shown
at the left, these are fed into the NARGP regression (possibly after some data screening, discussed
later) and classification, which are used to create predictions of melt pool dimensions and print-
ability. For regression, melt pool length is only trained for NARGP models without EXP. For
classification, empirical classes are used for all simulation data.

In the case of a single fidelity data source, data is typically generated via a space-filling design

of experiments (DoE) method such as Latin hypercube sampling (LHS). However, simply sampling

each of the thermal models used here from the different fidelities would result in multiple space

filling designs that would almost certainly not be nested, thus violating the assumptions of the

theory above. With multi-fidelity modeling becoming more common in the past decade, numerous

space filling nested DoE (nDoE) methods have been developed.[124, 125, 117, 118, 126, 127] In

this work, the relatively simple scheme of Le Gratiet et al. [117, 118] is chosen. In this nDoE

method, a space filling LHS design of ns points is first created for the highest fidelity model.

Subsequently, another LHS design is constructed for fidelity s−1 with ns−1 points. From the ns−1

points, the points that are closest in space to the higher fidelity ns points are removed and replaced

by the points ns. In this work, a simple Euclidean distance measure is used but any desired distance

measure could equivalently be implemented. The process as described is recursively applied until
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LHS designs are generated and modified for all s-fidelities. For this work, the ET model is sampled

500 times, the NEASM sampled 200 times, FE sampled 100 times, and experiments (henceforth

referred to as EXP) sampled 50 times. For training, all data are used except 15 experiments, which

were randomly selected from the 50 available. The 15 experiments not used for training are used

for validation/testing of the trained GPs.

The NARGP regression and classification as well as the nDoE are all implemented in Python 3.

The NARGP regression and classification are based on Emukit (https://emukit.github.

io/) [128], although the implementation has been modified to perform classification and cross-

validation (although not used for this work) in the regression setting.

2.5 Results & Discussion

In this work, the NARGP will be trained on all combinations of fidelities with 2 or more fideli-

ties included. In addition to this, each of the combinations will be trained once with a nonlinear

correlation between fidelities and a second time assuming a linear correlation between fidelities.

This will result in 22 trained NARGP models (Table 2.1), which will be compared to standard GPs

trained on a single fidelity. Each of the trained models will first be compared to the experiment test

set and discussed, following this, a comparison of which fidelities included in the NARGP result

in the best models for the least computational cost will be discussed.
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Table 2.1: Multi-fidelity model combinations with corresponding labels of 1-22. Each design uses
a binary labeling where a 1 indicates inclusion in the model and 0 exclusion. The nonlinear column
specifies if a nonlinear correlation was used (1) or was not used (0)

Nonlinear EXP FE NEASM ET

1 1 1 1 1 1

2 0 1 1 1 1

3 1 0 1 1 1

4 0 0 1 1 1

5 1 1 0 1 1

6 0 1 0 1 1

7 1 0 0 1 1

8 0 0 0 1 1

9 1 1 1 0 1

10 0 1 1 0 1

11 1 0 1 0 1

12 0 0 1 0 1

13 1 1 0 0 1

14 0 1 0 0 1

15 1 1 1 1 0

16 0 1 1 1 0

17 1 0 1 1 0

18 0 0 1 1 0

19 1 1 0 1 0

20 0 1 0 1 0

21 1 1 1 0 0

22 0 1 1 0 0
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2.5.1 Experiment Validation

2.5.1.1 Regression

Since a classification is being trained to screen for defect inducing parameters and the purpose

of the regression model is to predict good melt pool dimensions that can be propagated to sub-

sequent models, the regression model can be trained in one of two ways. First, utilizing all data

including data which produces melt pools that exhibit keyholing, beading, and/or lack of fusion.

Or second, screen the training data beforehand and only training the regression model on the most

relevant good print data. In the former case, more data will be available to train the model, but the

data may be unnecessary since some regions will never be queried for predictions and won’t nec-

essarily reduce the uncertainty in relevant good regions. For the sake of comparison, models are

trained using both data sets in this work. In both instances, a GP will also be trained on the highest

fidelity model used in the NARGP. Melt pool length is not included here as melt pool length mea-

surements were not able to be collected in the experiments. Mean absolute percent error (MAPE)

is used to evaluate the error of the trained model on the test data. The results of training can be

seen in figures 2.6a and 2.6b for the models trained on all data and models trained on only good

print data, respectively. Note, that in all cases, only test data that does not produce a defect will be

used to evaluate the model. Since the regression model will only be used to predict good prints,

these filtered test data will be the most relevant to evaluate true model accuracy. The filtered data

set has 7 test points remaining of the original 15.
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(a) MAPE when all training data is included. (b) MAPE when only good data is included.

Figure 2.6: MAPE evaluated on test set melt pool width (W) and depth (D) data for the NARGPs
of Table 2.1 and GPs.

From figure 2.6a, it can be seen that the GP can achieve a minimum error of 11.9% for the melt

pool width and 33.7% for the depth when it is trained using the FE data. In general, the NARGP

achieves a substantial improvement in accuracy over just the GP and in the worst cases, achieves a

similar level of accuracy. In the best case scenario the NARGP can predict the melt pool width with

4.5% error and the depth with 33.7% error. For the melt pool width, the best model combinations

were the EXP and FE with a nonlinear correlation structure, while for the depth, the best was any

model trained using FE without experiments.

For the GP only fitted to good data (figure 2.6b), a similar level of accuracy as the GP trained

on all data is achieved. The GP achieves a minimum error of 47.2% for the melt pool width and

33.9% for the depth when it is trained using the EXP data. As before and as expected, the NARGP

improves on or maintains the accuracy achieved by the GP alone with the best predicting the melt

pool width with 15.6% error using EXP and ET and a nonlinear correlation and the melt pool depth

with 11.5% error using all fidelities and a nonlinear correlation. Similarly, a melt pool depth error

of 11.6% can be achieved with the same fidelities as the previous except excluding the ET data.

Regardless of the removal of data before training, the NARGP produces better results than a

GP trained on a single fidelity. Furthermore, the NARGP demonstrates its value over traditional

multi-fidelity GP modeling approaches as the nonlinear correlation between fidelities produces

the models with the highest accuracy. As one might expect, the NARGP including experiments
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produces the models with the lowest error. However, this is not the case for the GP where the

model using FE data alone can produce a more accurate model than the one using experiments.

This further highlights the need for multi-fidelity modeling to effectively increase the amount of

information available for model training because, intuitively, experiments should always be used

when available as they represent the ground truth. However, due to their high acquisition cost, only

a limited number of experiments may be available and when taken alone may not produce the most

accurate model as has been demonstrated.

Looking at the difference in the best cases when using all data versus only good data, it can be

noted that the single best melt pool width prediction is obtained using all data, while the best melt

pool depth prediction is obtained when using the screened good data. This can be attributed to how

defects show up in the melt pool width and depth predictions. Melt pool width alone does not give

a strong indication of a defect, unlike melt pool depth which can be a good indicator of keyholing

and lack of fusion. Therefore, the melt pool width can be predicted more accurately when more

data is available during training as is typically the case with GP-based models. For melt pool depth,

the inclusion of data with defects and the fusion of information from models without the physics

necessary to produce those defects tends to result in a model that is less accurate than a model

trained on a consistent set of data (i.e., one where simulations and experiments are both operating

under the same physics). A similar trend on the difficulty of predicting melt pool depth can be seen

in Tapia et al. [71].

In the best cases, an accuracy of around 5-10% could be achieved in prediction (slightly under

for 5% for melt pool width and slightly over 10% for melt pool depth). Depending on the applica-

tion this could be an acceptable level of error given the trade-off with computational time. Some

recent works[70, 74, 76, 112] have demonstrated similar or slightly better accuracy on test data

after training a GP model and using it to calibrate a physics-based model. Besides the obvious

drawback of the increased computational time to query the model in comparison to the nearly neg-

ligible time to query a GP, this method has an additional drawback of a needing to use Bayesian

method to perform the calibration. These Bayesian methods, while becoming more common, can
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be costly and require some subject matter expertise to obtain convergence. The method imple-

mented here uses a more naive approach. While each model has the same general material of 316L

stainless steel, none of the models have been specifically calibrated to produce the same results.

Thus, for a new material system, one could simply obtain data and/or model parameters from lit-

erature or utilize existing models to generate a new predictive model without the need to perform

a new calibration.

There are a number of possible improvements that could be made to the NARGP to perform

regression, such as the inclusion of simulation data from a multiphysics model, but one of the

most notable improvements would be to change the NARGP from having multiple independent

outputs to being a multivariate or multi-output model[70]. The process to convert the NARGP

to a multivariate model would be relatively straightforward, though still beyond the scope of this

work. Since the NARGP essentially only requires the iterative training of multiple GPs, rather a

single multi-fidelity GP, the process to convert to a multivariate model would only entail converting

each GP into a multivariate GP and training the NARGP as usual. Converting to a multivariate

model could accomplish two objectives. First, it could potentially improve the regression model

by leveraging information from both width and depth simultaneously while training. Secondly,

by having a multivariate model, Bayesian methods could be used to impute the missing melt pool

length data when it is unavailable. The imputation of the missing data would be possible without a

multivariate model, but with a multivariate model, the coupling of the melt pool length, width, and

depth at lower fidelities could greatly improve the imputation.

2.5.1.2 Classification

Unlike regression, classification will always be performed on all available data. For the sake

of this work, classification will be conducted in a number of ways for comparison. First, it is

performed as described by Section 2.3.2 for each of the three defect classes, where each class

is binary 1 for defect and 0 if that defect is not present. A second approach is to group all the

defects into a binary problem of defect (1) or no defect (0) if one or more of the defects is present.

Finally, an approach similar to previous approaches[85, 73] where a trained regression model and
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empirical measures, as detailed above, are used to predict if a defect will be present and what that

defect will be. As the the beading metric requires melt pool length to approximate, any NARGP

or GP that contains EXP will use the melt pool width and depth as normal but use melt pool

length predictions based on the next lowest fidelity in the NARGP ((e.g., an NARGP trained with

EXP, FE, and NEASM will have melt pool length NARGP trained only on FE and NEASM and

GP trained only on FE while EXP would be included in NARGP and GP for width and depth

training)). To evaluate each of the classification models, a balanced accuracy score (BAS) is used.

The BAS is a standard measure of classification accuracy except each class is weighted by the

number of samples in that class. The BAS is used in this work since the number of defects in the

test set for each defect type is relatively low (3 of each type over the 15 total points in the test set).

Note that the BAS is 1 for a perfect classifier and is bounded between 0 and 1.

The classification results when predicting each defect individually are shown in figure 2.7. In

the case of beading (figure 2.7a), a maximum BAS of 0.875 is achieved and is obtained using the

regression-based NARGP and GP. The NARGP is only able to gain this level of accuracy using

only the NEASM and ET models with a linear correlation. The GP on the other hand obtains this

accuracy for a model trained on the NEASM. Interestingly, the NARGP and GP classifiers can only

obtain approximately 0.8 BAS. This is obtained for a number of combinations but most notably,

none of the combinations involve using experiments. For keyholing (figure 2.7b), a maximum

BAS of 0.83 is obtained with the NARGP classifier as well as regression-based classifier. For the

classifier, this BAS is achieved using EXP, FE, and ET runs with a linear correlation and for the

regression, it is achieved with EXP and NEASM runs using a non-linear correlation. Interestingly,

this maximum BAS regression case does not correspond to the regression results that best predict

melt pool width and depth. In the case of lack of fusion (figure 2.7c), there a number of models

that result in perfect predictions from all classifiers. The most notable result is with the NEASM

and ET models combined or simply the NEASM, regardless of which method is used, can result

in the highest BAS.
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(a) Beading classification BAS. (b) Keyholing classification BAS.

(c) Lack of fusion classification BAS.

Figure 2.7: Classification BAS for 3 defect types for the NARGP and GP classifiers and NARGP
and GP regression-based classifiers.

Again, note that the previous classifiers were tested on a set of 15 points where only 3 points

for each of the defects were present in the 15. This results in highly skewed classes and makes

determining the true model accuracy harder. By combining all defects into a single class, the

skew becomes much less noticeable as there are 7 defects of the 15 points. Combining the classes

also reduces training time as only a single model needs to be trained for the classifier. For the

regression-based classifier, 3 models are still trained since all melt pool dimensions are still needed

to make classifications before being combined into a single class. The results of the binary defect

classification are shown in figure 2.8. The results show a highest possible BAS of around 0.8 for

the regression-based classifiers. These occur for GPs trained on experiment data and NARGP and

GPs trained on NEASM and ET and NEASM, as was seen before.
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Figure 2.8: Grouped binary classifier BAS for NARGP and GP classifiers and NARGP and GP
regression-based classifiers.

A few interesting points can be noted about both the combined and individual defect classifiers.

First, it appears that in many cases, the regression-based classifier performs as well or better than

the regular classifiers. Furthermore, the NARGP classifier does not appear to outperform a standard

GP classifier in most cases. This is in contrast to the regression where the NARGP could greatly

outperform the standard GP. One possible explanation for the lack of performance of the NARGP

classifier is that the BAS is only indicating the mean performance of the classifier and not the

full probability space. In testing of the NARGP on a pedagogical example, it was noted that

the NARGP classifier produced fewer correct classifications but the overall probability map was

closer to the true boundary used to generate the data. It is possible that this is again occurring here,

however, without a concrete means to assess this, the BAS and similar metrics are the only option to

evaluate a model. Comparing the two approaches to classification, grouped versus individual, there

seems to be little impact on the BAS results. In the individual cases, the NARGP and GP classifiers

both perform around 0.8, which is close to the highest level of achievable accuracy in the grouped

cases. However, this conclusion is somewhat superfluous as the regression-based classifier appears

to outperform the actual classifier and the regression approach only makes predictions without

considering individual versus grouped during training. An interesting point that was mentioned

earlier is that a GP classifier trained on the NEASM as the highest or only fidelity tends to produce

the best or nearly the best results in all cases except individual keyholing predictions, where the

experiments produce the best model likely because the experiments are the only fidelity with the
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necessary physics to capture keyholing.

As with the regression there are some improvement that could be made to the classification. The

most notable improvement would be to change to a multi-class classifier. This would nullify the

need to decide between a binary defect/no-defect class or training individual classifiers. Much like

the regression, changing to a multi-class classifier would be as simple as replacing the GP classifier

implemented in this work with a new variant. The difficulty in changing to a multi-class classifier

in the NARGP context is that the most common method to perform multi-class GP classification

is via Bayesian methods, which become impractical when training multiple models sequentially.

However, some recent works have begun to develop and implement non-Bayesian approaches to

multi-class GP classification, which could be implemented in the NARGP framework.

2.5.2 Process Model Importance

In the previous section, each of the 22 trained NARGPs was examined and compared individu-

ally to the test set of experiments. Now, the NARGP results will be used to determine what fidelities

included in the results tend to result in a better performing model. This is done by grouping the

MAPE and BAS for each NARGP that includes each fidelity. This is further split by separating

the linear versus nonlinear correlation models. Box plots of the data generated by this process

are shown in figure 2.9 for the melt pool width and depth MAPE (for models with all data used

for training and only good data used) and in figure 2.10 for the grouped BAS from the NARGP

classifier and NARGP regression-based classification. For brevity, only the grouped classification

results are examined.
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(a) Melt pool width with all data. (b) Melt pool depth with all data.

(c) Melt pool width with good data. (d) Melt pool depth with good data.

Figure 2.9: Box plots showing MAPE ranges for NARGP models which included the given fidelity,
both, with and without a nonlinear correlation.

In the case of the regression results for melt pool width, it can be noticed that a nonlinear

correlation shows a wider spread of MAPE values, but tend to produce a better result in both cases

of training with all data or only good data. In the case of the linear correlation, the melt pool width

MAPE does not tend to change much as different fidelities are included in the NARGP. Whereas

for the nonlinear correlation, the MAPE does tend to slightly decrease as higher fidelity data is

added to the NARGP as one would expect. The results on melt pool width with all data versus

good data also reinforce the conclusions above that a low MAPE can be achieved with a model

trained on all data. With the exception of a couple outliers, the models trained on all data also show

a lower variance than the models trained on good data only.

For melt pool depth, the conclusions from the previous section still hold, in that NARGP mod-

els trained on good data tend to produce lower error rates than a model trained on all data. Further-

more, the models trained using experiments result in the lowest MAPE values with the lowest vari-
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ance. In the case of melt pool depth, the variance of linear correlation versus nonlinear correlation,

as well as variance changes with fidelity, do not appear to change significantly until experiments

are included. This, as stated, reduces the variance and tends to give the best results. Unlike melt

pool width, the melt pool depth does not seem to improve significantly with higher fidelity data.

The best model is any model multi-fidelity model that includes experiments. A similar conclusion

can be made about melt pool width.

(a) NARGP classification. (b) NARGP regression-based classification.

Figure 2.10: Grouped defect BAS box plots for fidelities included in the NARGP model for models
with and without nonlinear correlations.

Unlike regression, the classification shows consistent BAS values regardless of NARGP fideli-

ties or correlation used. In fact, there is a slight upward trend in the BAS for the NARGP classifier

when lower fidelities are included. A similar trend can be noted for the regression-based clas-

sifier, although the trend is not as prevalent. The trends shown in the box plots offer additional

insight into the previous conclusion about the regression-based classification outperforming the

standard classification. The NARGP classification, as detailed in this work, does tend to perform

as well or better then the regression-based version. However, the highest BAS obtained is with

the regression-based models. The classification method presented in this work also shows a lower

variance, which could be a desirable feature that makes selection of specific fidelity data sets less

important.
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2.5.2.1 Model Selection

Having several fidelities of data available to make the best model is obviously ideal, but training

all combinations of models and generating data from so many sources is generally not practical.

Here some best practices are discussed that result in generating data from the fewest fidelities

that result in the best trained models. This is done for regression only models, classification only

models, and then models for classification and regression.

For regression, two models will likely need to be trained regardless; one for melt pool width

on all available data and another for melt pool depth where the data has been screened a priori

to select only data which does not produce defects. While training two models is not ideal, the

benefits could be worthwhile since a melt pool width prediction of <5% and depth prediction of

11% is possible. Additionally, the NARGP is implemented with a maximum likelihood approach

so training of a model is relatively fast. The drawback to achieve the level of accuracy shown

is that at least 3 fidelities of data would be required, namely, EXP, FE, and NEASM. This could

be a significant cost to acquire data from those sources and may not even be possible given that

enriched analytical solutions are not widely available. Alternatively, a model using only EXP

and ET data can be trained which results in a greatly reduced data acquisition cost with only a

slight accuracy penalty, achieving 12.3% width and 13.6% error rates for the melt pool width

and depth, respectively. While this level of error is somewhat high, it could serve as a good first

order approximation and does not require specific calibration of the ET parameters using Bayesian

methods.

In the case of classification, recommendations are much more difficult to make as clear trends

are not seen as has been demonstrated in the previous sections. Using the NEASM model for

any of the four classification methods shown (NARGP and GP classification and regression-based

classification) appears to result in the best classifier for both individual and grouped classification

except for keyholing predictions. Only models containing experiments are able to accurately pre-

dict keyholing to some extent. For the grouped classification, similar conclusions can be drawn.

A GP regression-based classification with the NEASM or EXP provides the highest BAS around

36
This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited.



0.8. Interestingly when combined in a multi-fidelity model, the result does not improve and tends

to get slightly worse at 0.72 BAS.

Taking everything together, an NARGP model containing EXP, NEASM, and ET seems to be

able to provide the best predictive model. The experiments improve keyholing and melt pool width

and depth predictions, while the NEASM and ET have the purpose of predicting beading, lack of

fusion, and/or grouped classification and add additional information to supplement the limited

experiment data. While the resulting model would not be the best possible model, it would balance

the data generation and model creation processes. Additionally, it would only require training a

single NARGP regression model. While using the regression-based classification resulted in the

best overall results, using the NARGP classification does have the potential to produce equivalent

results to the regression-based version with less dependence on which fidelities are selected as was

shown in the previous section.

2.6 Summary

This chapter has presented an analysis and discussion on predicting and classifying AM melt

pools using multi-fidelity GP surrogates. The work examined four common sources of information

at different fidelities, from analytical to experimental, and combined that information in a NARGP

regression and novel classification models. The models were trained on a representative set of data

and compared to a test set of experiments. All combination of fidelities were trained and com-

pared to a standard GP. The NARGP regression demonstrated superior results over standard GP

regression and require no model calibration (i.e., Bayesian methods). Further, certain combina-

tions of models, namely the experiments and Eager-Tsai model, were able to produce an accurate

model which balanced data generation cost with attainable model accuracy. Depending on the

fidelity of information available, a model was able to be produced, which matched or exceed the

performance of existing GP modeling and calibration approaches. For classification, results us-

ing both grouped and ungrouped classes were examined along with regression-based classification

using empirical measures and how that compared to using binary classification methods. The re-

sults showed that for ungrouped classification, experiments were necessary to accurately predict
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keyholing, as one would expect, but using only the NEASM or a multi-fidelity model with the

NEASM was sufficient to predict beading and lack of fusion. In the grouped classification setting,

similar results were seen. In both cases, the regression-based classification was shown to produce

a singular best model for classifying printability, but typical classification methods were able to

produce more consistent results that were less dependent on the fidelities included in the model.

While the NARGP classification approaches were able to produce some models that exceeded the

performance of a standard GP, the results were not consistent. It was postulated that while the

NARGP did not improve significantly on the classification accuracy for the available test set, it

likely improved the predicted probability space.
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3. AM PROCESS-STRUCTURE SURROGATE

3.1 Introduction

As was stated in chapter 1, there are a number of authors who have recently begun to analyze

process-structure linkages for AM.[129, 7, 130] This linkage, is of great interest to the AM commu-

nity, but much of the work to date has been on analyzing microstructures to extract information for

ML, not necessarily linking the process to the structure for AM.[47, 131] Some of these methods

use statistics to reconstruct microstructures from 2D sections.[132, 133, 134, 135, 136, 137] How-

ever, this has the obvious drawback of requiring information from experiments. More recently,

spatial correlations have been used to reconstruct microstructures [138, 139, 140, 141, 142, 53]

and these methods have been extended to incorporate ML methods.[143] In general, all of the

reconstruction or feature extraction methods reference have been aimed at the case of general mi-

crostructure reconstruction. However, it must be recognized that AM microstructure are vastly

different from typical microstructures and many of these methods may not be applicable. For

instance, the use of the software DREAM.3D [135] to reconstruct a microstructure from a 2D sec-

tion must make some assumptions about the 3D statistics based on the 2D statistics. In AM, the

3D information may not match the 2D (i.e., a grain may have a certain appearance in a plane but

have a vastly different shape in the transverse direction). Popova et al. [130] recently developed

a PS linkage for AM microstructures generated by kinetic Monte Carlo (kMC) methods using an

ML workflow and spatial correlation methods. But much work is still needed in this area, such

as the inclusion of more physics-based models in the process-structure framework. The work-

flow presented in [130] is quite general and is implemented in this work albeit with a different

methodology.

3.2 Microstructure Generation

There are a number of ways to approach modeling the microstructure formation phenomenon

in AM.[144, 81, 145] The least physical approaches are purely statistical methods based on sim-
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ulating the parameters of a tessellation model, with the drawback that these models are often too

simplistic to capture the complex morphologies of AM microstructures.[146, 147] The next level

of fidelity are statistical models, such as kMC methods, which simulate the time evolution of

the grains growing in 3D and account for some idealized physics of the AM process.[148, 149]

While these methods are capable of generating qualitatively good AM microstructures, they do

not incorporate material texture or anisotropy and do not incorporate coupling of the thermal and

microstructure models. The highest fidelity models incorporating the most realistic physical phe-

nomena are phase field models that incorporate the kinetics of microstructure evolution into an

energy functional to be minimized.[150, 151, 152, 153, 154] While this approach enables studying

effects of competing mechanisms, it is too computationally demanding to simulate large numbers

of polycrystalline microstructures for training an ML model. An alternative is to utilize the cellular

automata FE (CAFE) model, which is a popular technique to simulate microstructure solidification

because of its relationship between computational tractability and fidelity of physics.[155, 156]

In this work, a CAFE model that has been modified to optimally simulate the solidification

of AM metals in large domains (on the order of 0.5-1 cm3) is implemented for the generation of

microstructures.[157] In this model, the small time scale of the solidification analysis is treated

independently, as sub-cycles, within each larger scale discrete time step associated with the tem-

perature field. Additionally, rather than growing the solidification front by using very small time

steps in each sub-cycle, the time it takes for each solid voxel to capture its neighboring voxels is

predicted and the simulation evolves sequentially based on priorities associated with the estimated

time of capture. An additional modification to the CAFE model, which improves computational

efficiency, is the determination and consideration of only the current active region(s) in the do-

main, which for AM is the region of the heat affected zone where the material is undercooled (i.e.,

below liquidus temperature) but has yet to be solidified. The CAFE model is used to simulate

the epitaxial grain growth from the base plate of the AM build by incorporating empirical models

for analyzing competitive growth, such as preferential crystallographic growth or thermal gradient

driven growth. An instantiation of the CAFE model consisting of 3 slightly overlapping tracks and
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multiple layers is shown in figure 3.1.

(a) Full 3D microstructure consisting of 3 tracks and
multiple layers.

(b) A 2D cross-section of the same microstructure,
which better demonstrates grains growing in the di-
rection of the melt pools.

Figure 3.1: Polycrystalline microstructure generated using the modified CAFE model. Grain colors
correspond to grain labels from 1 to N , where N is the total number of grains.

3.3 Multi-output GP

As has been mentioned, a multi-output GP (MOGP) is implemented to emulate the CAFE

model and link outputs from the process modeling surrogate to microstructure statistics needed for
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the SP surrogate. A diagram of this linkage is shown in figure 3.2.

Figure 3.2: Diagram of the process-structure surrogate linking melt pool information, in this case
dimensions of length (L), width (W), and depth (D), to microstructure statistics such as grain
volumes and orientations.

In this work, each set of process parameters will generate a set of melt pool dimensions

and each of those is subsequently used to generate a microstructure representative volume ele-

ment (RVE). There are primarily two ways in which an RVE can be represented by an ML frame-

work, as a 3D image or by dimensionality reduction. The former can be accomplished using

unsupervised ML techniques and has begun to gain traction in the materials community with the

advancement of generative adversarial networks (GANs).[158, 159, 160] However, these methods

are quite new and as such emulating a 3D microstructure, especially one that exhibits the features

seen in AM microstructures, is still an active research problem. The later method of dimension-

ality reduction is much more common, simpler, more interpretable, and implemented in this work

following the workflow of figure 4 in [130].

First, in the data preprocessing stage, the output microstructures from the CAFE model are

augmented by removing the base plate and disregarding simulations that did not result in complete

melting. Next, in the microstructure quantification stage, the RVEs are processed to extract the 10

necessary parameter distributions for the SP surrogate. This process is accomplished by represent-

ing each grain in the RVE approximately as an ellipsoid then extracting volume, 3 radii, 3 orienta-

tion angles, and 3 size and shape dependent constitutive model parameters. The distributions from
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all available microstructures are next merged into a unified data set where the dimensionality re-

duction stage begins. A quantile transformer is applied to each of the unified distributions to obtain

10 approximately normal distributions along with a reversible transformation process to achieve

those normal distributions. This transformation is then applied to all available RVEs to extract 10

means and 10 variances from each RVE. This results in a set of scalar inputs that can be related

to 20 scalar outputs. However, this is a large number of outputs and to make the problem more

tractable, the outputs are reduced from 20 to 4 using principal component analysis (PCA), which

captures approximately 99% of the variance of the underlying data. The next stage in the process

is the data-driven model estimation. In this stage, the MOGP is fitted to the training data. The

training data consists of 74 CAFE model generated RVEs, each having a unique generating set of

melt pool dimensions and corresponding process parameters. Each model consists of a base plate,

which is trimmed off in the first stage, then a 4 printed layers each with 3 hatches. The hatch spac-

ing is parameterized so that the tracks overlap based on the melt pool dimensions.[85] Each hatch

is done in an alternating direction and the hatches on each layer are rotated 90◦ from the previous

layer. For the MOGP, either a coupled output [70] or independent output approach can be taken.

In this work, an independent output model is used over the coupled (linear model of coregional-

ization [161]) output as during testing, it was noted that the coupled model only produced slightly

better results on the first principal component (PC) but significantly worse results the other PCs.

When considering a weighted error based on the explained variance of each PC, the independent

model still outperformed the coupled model. Validation of the MOGP is accomplished by way of

10-fold cross-validation (CV) and a single left out test case. Since basic details of GPs has already

been given in chapter 2 and the independent output model is essentially multiple standard GPs,

further details are omitted.

3.4 Results

The CV results of the trained MOGP are shown in figure 3.3 with the explained variance

ratio (EVR) of each PC shown. The CV results overall follow the 1:1 predicted:actual ratio that is

ideal. The exception being the 3rd PC which is shows a constant predicted value of approximately
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0. This is likely a result of the inputs not adequately describing that PC. While this will affect the

prediction accuracy, it should be a relatively minor effect since that PC only explains 1% of the

total variance.

(a) 1st PC. (b) 2nd PC.

(c) 3rd PC. (d) 4th PC.

Figure 3.3: 10-fold CV parity plots for each PC of the MOGP surrogate. The explained variance
ratio (EVR) is shown above each plot.

The predicted vs actual distributions of all 10 parameters for the left out test case are shown in

figure 3.4. From these histograms and corresponding kernel density estimates, it can be seen that

the predicted distributions have some differences from the actual but qualitatively they are mostly

similar. To further assess this quantitatively, a number of tests for differences are applied, namely,

the Kolmogorov-Smirnov (KS), Cramér–von Mises (CVM), k-sample Anderson-Darling (kAD),

and Wilcoxon–Mann–Whitney (WMW) tests. Each of these tests, while distinct, have the same
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purpose of testing how similar two sets of data are with a null hypothesis that the two sets of

data are drawn from the same distribution. A value of 0.05 is applied to the results of the test

to assess significance. On the training data, as expected, these tests return a value that does not

reject the null hypothesis (i.e., the underlying distributions are the same). However, when applied

to the tests case, all tests except the WMW reject the null hypothesis that the data come from the

same distribution. This is somewhat expected for predicted distributions such as figure 3.4g, but

unexpected given the similarity in some predictions such as in figures 3.4i and 3.4b.
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(a) Grain shear strength parame-
ter

(b) Grain shear strain parameter (c) Grain hardening modulus pa-
rameter

(d) Ellipsoid first Euler angle (e) Ellipsoid second Euler angle (f) Ellipsoid third Euler angle

(g) Ellipsoid major axis radius (h) Ellipsoid intermediate axis
radius

(i) Ellipsoid minor axis radius

(j) Ellipsoid volume

Figure 3.4: Predicted versus actual distributions for the 10 parameter distributions. The natural log
of the parameters is shown for all values except the Euler angles.

Rejecting the null hypothesis for the comparison tests is not ideal and suggests that there is po-

tential for improvement in the MOGP, both during training and how the transformations are com-
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pleted. However, two additional points can be made. First, even with the most realistic physics-

based modeling, it is conceivable, especially with the large variability in AM, that two RVEs taken

from the same larger microstructure could result in qualitatively similar microstructures and dis-

tributions but be dissimilar enough that tests for identical distribution could indicate that the RVEs

were from different microstructures. Second, the purpose of the MOGP is ultimately to create

a link from process modeling to the SP model and obtain an accurate property prediction. This

link needs to be as accurate as possible, but the accuracy of the results after they are propagated

through the whole framework will give much more insight into where time should be invested to

make improvements (i.e., changes in the MOGP accuracy may have a relatively minor influence

on the predicted properties and it is not worth investing significant time in the MOGP to make

minor improvements to the whole linkage). Therefor, the MOGP with qualitatively accurate pre-

dictive distributions and acceptable CV errors can be taken as is and reevaluated later for possible

improvements.

3.5 Summary

This chapter has shown the development and demonstration of a multi-output GP with the

purpose of linking process model outputs to microstructure statistics. In this case, the MOGP

linked melt pool dimensions to 10 distributions of microstructure parameters. Microstructures

were generated using a CAFE model and melt pool dimensions used to drive the CAFE and MOGP

models were obtained from the models in chapter 2. Data from the CAFE model microstructures

was extracted and transformed using quantile and normal distribution transformers such that mean

and variance could be extracted. From the mean and variance of 10 distributions, 4 PCs were

obtained that described 99% of the underlying data variance and these used to train the MOGP.

10-fold CV results on the PC components generally showed good agreement between the actual

and predicted values. A withheld test case was used to further validate the MOGP. Qualitatively,

the predicted de-transformed results were good, but when tests for differences were applied, most

indicated the contrary. However, this was only a single test case so definitive conclusions cannot

be drawn yet. Further test cases will be studied in chapter 5 when new data is propagated through
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the full PSP linkage including the MOGP.
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4. AM STRUCTURE-PROPERTY SURROGATE *

4.1 Introduction

In this chapter, the emphasis will be on understanding and generating ML-based structure-

property linkages from simulated AM microstructures coupled with crystal plasticity finite ele-

ment (CPFE) simulations. The CPFE method is a powerful tool for modeling the elastoplastic

mechanical response of anisotropic, heterogeneous, polycrystalline aggregates by taking into ac-

count the effects of various microstructural features.[162, 163]

4.1.1 Columnar Grain Structures in AM

As mentioned in chapter 1, in AM processes, the continued melting and solidification involved

in AM greatly influences the local microstructure. Furthermore, the microstructure of a multilayer

build also is affected by the overlap of multiple scan tracks within a single layer along with the

partial or full remelting of previously deposited layers.[164] A defining characteristic of the mi-

crostructure formed from AM processes is the presence of epitaxially grown columnar grains with

different grain sizes and aspect ratios.[165, 166, 167, 168, 169, 170, 171, 172, 173] A consequence

of the texture morphologies is varying mechanical properties with strong fiber < 1 0 0 > tex-

tured microstructures, including a decrease in Young’s modulus compared with non-textured AM

microstructures.[165] Furthermore, elastic properties of AM parts can vary significantly depend-

ing on the orientation of the build direction with respect to the loading direction.[174, 175] AM

materials with strong texture also are shown to have anisotropy in failure processes, such as fatigue

crack growth.[166]

*Portions of this chapter have been reprinted with permission from R. N. Saunders, A. Achuthan, A. P. Iliopoulos,
J. G. Michopoulos, and A. Bagchi, “Effects of the Microstructural Grain Size and Aspect Ratio on the Mechanical
Properties of Additively Manufactured Parts via Computational Analysis,” Def. Tech. Inf. Cent., no. NRL/FR/6353–
20-10,411, 2020 and R. Saunders, C. Butler, J. Michopoulos, D. Lagoudas, A. Elwany, and A. Bagchi, “Mechanical
Behavior Predictions of Additively Manufactured Microstructures using Functional Gaussian Process Surrogates,” npj
Comp. Mater., 7(1), 1-11, 2021.
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4.1.2 CPFE Modeling in AM

A significant amount of work toward determining the mechanical behavior of AM metals ex-

hibiting strong textures can be identified. Several experimental investigations have studied varia-

tions within an AM build.[176, 177, 178, 179] However, iteratively and exhaustively performing

experiments can become prohibitively costly. As an alternative, CPFE simulations can be used

to model the effects of AM microstructures on the macroscopic properties and performance of

the material. Since grain morphology affects mechanical properties significantly, the computa-

tional models for the structural analysis of AM requires both a constitutive model that can cap-

ture accurately the microstructural dependence of the material behavior as well as a representa-

tive microstructure that features AM relevant elongated grain aspect ratios and crystallographic

textures.[180, 181, 182] Few computational studies have utilized realistic, three-dimensional mi-

crostructures generated by simulations of the involved process. One effort utilized 3D CAFE model

to model the AM process and CPFE simulations to simulate the spatial variation of microstructure

and mechanical properties within a rectangular AM build.[183] In this study, the nucleation pa-

rameter used in the AM process simulation was varied to study the effect of grain size on response.

Another recent study focused on microstructure and property variation between disparate AM pro-

cesses rather than spatial variation within a single build.[184]

4.1.3 CPFE-based Machine Learning

Although the use of CPFE over experiments is, in general, more flexible and generates data at

a lower cost, the computational cost can still be very high. One solution is to utilize ML. There

are a number of ways in which an ML model can be trained to represent a CPFE model and link

structure to properties.

One method is to use deep learning (DL) to learn the constitutive model response.[185, 186,

187] This method is applicable beyond CPFE and can incorporate true physical constraints of the

problem during learning. However, DL requires a large training data set which can be infeasi-

ble to generate using the computationally CPFE model. Additionally, it is not clear whether this
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method will yield acceptable performance when applied to polycrystalline microstructures, espe-

cially those with the complexity of AM microstructures, as this has not been addressed in existing

literature studies. An alternative method to learning the constitutive model is to use microstructural

features and directly relate them to certain quantities of interest (QoIs) [188, 189, 190, 191] ((e.g.,

elastic modulus, yield strength, etc.)) or the full stress-strain behavior [192, 193, 194]. In an ML

framework, it is conceptually straightforward to relate microstructural features directly to QoIs

and this is very useful to characterize a given material or fit a given constitutive model. However,

in characterizing the material by only a few QoIs a significant amount of information about the

stress-strain history is lost and the constitutive model must be chosen a priori. It is anticipated that

relating the microstructure morphological features to the full stress-strain history will provide ben-

efits over just predicting certain QoIs but it is conceptually more difficult to predict the stress-strain

response. Liu and Wu [192] propose a DL-like approach termed deep material network (DMN)

where phases in a representative volume element (RVE) are characterized and then propagated

through homogenization and rotation operations. The operations are done such that the analytical

characterization, homogenization, and rotation acts nearly identically to the operations involved

in a conventional artificial neural network (NN). Another approach by Frankel et al. [193, 194]

directly implements a hybrid convolution, long short-term memory recurrent NN (ConvLSTM) to

process a microstructure image and predict its full, spatially resolved stress-strain history. While

the approaches of both methods differ substantially, both are able to show very high prediction

accuracy on withheld data. However, both are based on DL, which as previously mentioned, has

a large training data requirement. In the DMN and ConvLSTM models, hundreds of RVEs were

generated for training, validation, and testing. In those works, generating hundreds of cases was

feasible due to the relative simplicity of the constitutive models, dimensionality of the problem,

and microstructures being examined. As mentioned before, AM microstructures do not exhibit

such simplicity so the generation of hundreds of simulations for training will be prohibitively time

consuming, even on the most advanced high-performance computing systems. Additionally, DL-

based models do not have an inherent uncertainty quantification method.
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4.1.3.1 Functional Gaussian Process Modeling

The recognition of the fact that CPFE models are displacement driven and the outputs of stress

and strain are derived, continuous functions offers an opportunity for a new approach. Functional

data analysis (FDA) is an area of statistics, which handles data that reside in an infinite dimensional

space (i.e., functions such as continuous time series data) [195]. As with traditional statistical

methods, FDA has two methodologies, parametric [196] and non-parametric modeling [197, 198].

The latter set of methods deals with the case of modeling infinite dimensional functional data

using non-parametric methods, which also follow a general infinite dimensional assumption. These

methods are thus applicable to Gaussian processes (GPs) among other non-parametric methods.

A number of authors have studied GPs with functional data and shown success in developing a

functional predictive capability [199, 200, 201, 202, 203, 204]. Li et al. [205] even recognized

the applicability of the functional Gaussian process (fGP) to AM thermal process simulations. As

already pointed out, in CPFE a function (i.e., displacement) can be related to another function ((i.e.,

stress/strain)), but there is an additional requirement for the existence of a set of scalar parameters,

such as grain morphology descriptors and constitutive model parameters that do not change with

the displacement. The drawback of the fGP models developed in the previous works is that they

are restricted to function-on-scalar ((i.e., functional input, scalar output)) or function-on-function

GP regression, but the current problem requires an approach to model function-on-mixed scalar

and functional data. Recent developments by Wang and Xu [206] have addressed this restriction

and allow for mixed scalar and functional input variables along with functional and/or scalar output

variables.

4.1.4 Summary

In this chapter, an fPG framework is developed based on the fGP model of Wang and Xu [206]

for predicting the stress-strain behavior of AM microstructures as they are related to microstruc-

tural morphology features. The GP-based system provides a fast, flexible, less data intensive alter-

native to existing DL methods and as a natural outcome, provides a predictive mean and variance
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for the stress-strain history. Additionally, GP-based models, such as the one developed here, are

easily generalizable to multi-output [207] and/or multi-fidelity [107, 208, 108, 109, 118] variants.

The framework developed herein has the additional novelty of predicting stress-strain history on

a per grain basis, meaning that the microstructures used for training can be much smaller (i.e.,

fewer grains) than the microstructures to be approximated. The development of this framework

will be shown and then trained using simulated microstructures from two sources. The initial

training will use a low cost approximation to real AM microstructures to demonstrate feasibility

of the framework. As part of this, the framework will be applied to previously unseen microstruc-

tures generated by the same method as the training/testing data and then be used to demonstrate

how grain size and shape influence mechanical properties without the use of costly CPFE models.

Once demonstrated, the fGP network is retrained using physics-based simulated microstructures

and efficacy is addressed again. Finally, the work is summarized and discussed.

4.2 Methods

4.2.1 Data Generation

The crystal plasticity data in this work is based on a microstructural-informed CPFE model de-

veloped by Saunders et al. [209]. The microstructure-informed CPFE model is a phenomenological

model, which has been modified to account for grain size and aspect ratio effects. This modifica-

tion was directed specifically at capturing the non-conventional grain morphologies seen in AM

parts. A brief description of the process used to generate, mesh, and simulate microstructures is

given here but, for brevity, theoretical aspects of the constitutive model and full implementation

details are omitted and the interested reader is referred to [209].

This work utilizes both a synthetic microstructure generation method known as the continuum

diffuse interface model (CDIM) [210, 211] and the CAFE model as described in chapter 3 to gener-

ate microstructure data. The CDIM is capable of generating, in a matter of minutes, representative

volume elements (RVEs) with features mimicking those seen in actual AM microstructures that can

be used for crystal plasticity simulations. Once generated from either method, the microstructure
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RVEs are automatically imported into Simpleware ScanIP (Synopsys, Mountain View, CA, USA)

using a Python script, run through the Simpleware Scripting interface. The script then creates a

single multi-label mask based on the greyscale information contained in the image data. Finally an

unstructured volume mesh is generated and exported. The mesh comprises curved quadratic tetra-

hedral elements generated Simpleware’s +FE Free algorithm. The density of elements is dependent

on the geometry of the structure, with more smaller tetrahedra added where the surface requires

greater representation. In regions of small or no geometric change, decimation is used to gen-

erate larger tetrahedral elements to reduce the size of the mesh files and so speed up simulation.

The mesh settings chosen were optimized for the simulation hardware resources available. The

simulation-ready meshes were exported in a *.inp format. Once meshed and exported, the RVE

is processed again to incorporate periodic boundary conditions, assign constitutive model parame-

ters, and apply the desired loading scenario. The RVE is simulated using Abaqus/Standard (Das-

sault Systems, Providence, RI, USA) and the constitutive model is implemented in a user material

subroutine (UMAT). In this work, the microstructure morphology variations are the only input

parameters being varied. Thus to generate the necessary data to train an fGP model, the process

described above must be run iteratively to generate microstructures exhibiting a variety of different

size and aspect ratio grains.

4.2.2 Functional Gaussian Process

A brief overview of GPs is first given before showing the extensions to a functional Gaussian

process. For a complete derivation of GPs, the interested reader is directed to the landmark work

of Rasmussen and Williams [212]. First, let the input variables be denoted byXXX = (xxx1, . . . ,xxxn)T

and let f(·) be an unknown stochastic process. A GP is a non-parametric statistical model in which

f(·) is to follow an n-dimensional multivariate Gaussian distribution such that,

p(f(xxx1), . . . , f(xxxn)) ∼ Nn(µµµ,kkk), (4.1)
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where µµµ is the mean vector defined by the mean function µ(xxxi) = µµµi = E [f(xxxi)] and kkk is the

covariance defined by the covariance function k(xxxi,xxxj) = kkkij = cov [f(xxxi), f(xxxj)]. Now, the

Gaussian process can be denoted as f(·) ∼ GP(µ(·), k(·, ·)). The standard problem of nonlinear

regression takes the form

yi(xxxi) = f(xxxi) + εi, (4.2)

where f is as above and follows a GP, and εi are independent and identically distributed Gaussian

random noise with 0 mean and σ2 variance. It then follows that

yyy = (y1, · · · , yn)T ∼ N (µµµ,KKK), (4.3)

whereµµµ = (µµµ1, · · · ,µµµn)T andKKK = kkkij+σ
2III , where III is the n×n identity matrix. The assumption

of Normality is crucial to the GP framework as it allows the specification of a mean and covariance

function that defines the presumed relationship between data points. As is common in many works,

this work will assume that the mean function is 000. Furthermore, the covariance function will take

the form of a Matérn 3/2 covariance as

k(xxx,xxx′) = η

1 +

√√√√3

p∑
k=1

θ2k(xk − x′k)2

 exp

−
√√√√3

p∑
k=1

θ2k(xk − x′k)2

 . (4.4)

The parameters {η, θ1, . . . , θp, σ2} make up the set of so-called hyper-parameters, which allow

“tuning" of the correlation between data points. The estimates of these parameters can be obtained

through standard frequentist or Bayesian estimation. This work will utilize maximum likelihood

estimate (MLE) throughout for simplicity. An additional outcome of the Normality assumption is

that for a new input xxx∗, the corresponding response is also Normally distributed and its mean and

variance can be found as

y∗ =k(xxx∗,XXX)TKKK−1yyy,

σ2∗ =k(xxx∗,xxx∗)− k(xxx∗,XXX)KKK−1k(XXX,xxx∗).

(4.5)
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In the derivation above, it has been assumed that xxxi takes the form of a vector with scalar

components. However, the data need not be of a scalar form and can take the form of functional

data. With some modification to the above derivation, functional data can be incorporated into the

GP. For the purposes of this work, the functional GP (fGP) will be restricted to functional outputs

only. Extensions to scalar outputs are discussed following the derivation of the fGP.

The functional response Y (t) can be defined as an L2-continuous stochastic process on T such

that the functional regression can be written as

Yi(t) = f(XXX i(·), zzzi) + εi(t), t ∈ T , (4.6)

where XXX i(·) are now the q-dimensional functional parameters, zzzi now represent p-dimensional

scalar parameters, and the Gaussian noise is now functional as well with mean zero and variance

σ2
ε . Utilizing functional principal component analysis (fPCA), Yi(t) can be decomposed as

Yi(t) = µ(t) +
J∑
j=1

βijφj(t) + εi(t), t ∈ T , (4.7)

where µ(t) is the functional mean of the stochastic process, the summation term is the decompo-

sition of the stochastic process covariance truncated to the first J terms, φj(t) are the stochastic

process covariance eigenfunctions, and βij is the j-th principal component of the i-th sample. The

functional mean and eigenfunctions of the previous equation do not depend on the sample i and

as such can be determined using FDA methods without the use of a GP. Therefore, the problem of

determining Yi(t) can be restated as two problems. First, determine the mean and eigenfunctions

of the stochastic process as well as the noise variance using FDA. Second, relate the stochastic pro-

cess principal components to the input parameters. The first process relies solely on the response

data and acts as a linear shift and scaling of the data such that it has a zero mean. The second

process can be stated as

βij = gj(XXX i(·), zzzi) + eij, (4.8)
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where eij ∼ N (0, σ2
j ) with σ2

j being the Gaussian random noise variance of the j-th principal

component and gj is an fGP for the j-th principal component. Following the process above for a

standard GP, it can now be stated that

βββj = (β1j, · · · , βnj)T ∼ N (000,KKKj), (4.9)

where, with slight change in notation from above, KKKj = kkklmj + σ2
jIII . The covariance kkklmj will

again take the form of a Matérn 3/2 as

kj(XXX,XXX
′, zzz, zzz′) = ηj

1 +

√√√√3

p∑
k=1

θ2kj(zk − z′k)2

1 +

√√√√3

q∑
k=1

ω2
kj||Xk −X ′k||2k


exp

−
√√√√3

p∑
k=1

θ2kj(zk − z′k)2 −

√√√√3

q∑
k=1

ω2
kj||Xk −X ′k||2k

 .

(4.10)

As before, the scalar term containing zk is a standard Euclidean distance measure between data

points that satisfies the properties of a metric space. However, the functional data term containing

Xk does not satisfy the requirements for a metric space so traditional distance measures are not

sufficient. A semi-metric space is a relaxed version of a metric space and measures of distance can

be developed in that space as discussed by Ferraty and Vieu [197]. This work will utilize the fPCA

based semi-metric which defines the distance between functional data as

||X −X ′||2r =
r∑

k=1

(∫
[X(t)−X ′(t)] νk(t)dt

)2

, (4.11)

where νk are the orthonormal eigenfunctions of the largest r eigenvalue covariances, E [X(s)X(t)].

Further discussion and practical implementation details are omitted here but can be found in [197].

Having specified the covariance, the hyper-parameter set can be identified as

{
ηj, θ1j, . . . , θpj, ω1j, . . . , ωqj, σ

2
j

}
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for every one of the J truncated principal components. In order to determine the predictive func-

tional response, Y ∗(t), given a set of inputs (XXX∗(t), zzz∗), the predictive mean, βββ∗j , and variance, σ2∗
j ,

must be found as

βββ∗j =kj(XXX
∗(t),XXX(t), zzz∗, zzz)TKKK−1j βββj,

σ2∗
j =kj(XXX

∗(t),XXX∗(t), zzz∗, zzz∗)−

kj(XXX
∗(t),XXX(t), zzz∗, zzz)KKK−1j kj(XXX(t),XXX∗(t), zzz, zzz∗).

(4.12)

Now, the predictive mean and variance of the functional response can be found as

Y ∗(t) =µ̂(t) +
J∑
j=1

βββ∗jφj(t),

σ2∗(t) =σ̂2
µ(t) +

J∑
j=1

σ2∗
j φ

2
j(t) + σ̂2

ε ,

(4.13)

where σ2
µ(t) is the variance of the functional mean µ(t) and the (̂·) notation has been introduced to

denote values estimated using FDA methods. As an aside, the fGP utilized here has the capability to

model any combination of functions/scalars to functions/scalars. The derivation above has shown

function-on-function/scalar regression but one could reduce this to a case of function-on-scalar or

function by simply eliminating, respectively, the first or second summation term in equation 4.10.

Additionally, for scalar-on-function/scalar regression, the kernel of the standard GP (equation 4.4)

can simply be replaced by the functional kernel (equation 4.10). The fGP is implemented in a

Python class, while the FDA methods used to determine the functional mean and variance as well

as the functional Gaussian noise variance are implemented in Matlab.

4.3 fGP Framework

The set of inputs needed for a CPFE model are the uniform kinematic displacement bound-

ary conditions (uuu, vector of functional variables) applied to the faces of an RVE over the duration

of the simulation, constitutive model parameters (θ, scalar variables) that define the material be-

havior, and the microstructure morphology (non-functional variables i.e., scalar, vector, or tensor
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variables). Additionally, a loading parameter (λ, scalar functional variable), such as amplitude over

time, is used to incorporate history dependence into the model for situations where displacement

or other quantities may be non-unique or non-monotonic (e.g., loading-unloading experiments).

During each time increment of the CPFE simulation, a step in displacement is taken based on the

value specified by the loading parameter, and along with the previous state of stress and strain in

an element, a new element strain is computed followed by a stress update for the element in the

current increment. The output of this process at the end of the simulation is a stress-strain curve for

each of the 6 stress/strain components at each finite element in the simulation. The stress and strain

outputs at each element can be taken as is or processed further to obtain values such as equivalent

strain and equivalent (von Mises) stress. Theses equivalent values, or the individual components,

can then be homogenized over the whole RVE, over individual grains, or other subsets of the RVE.

The process as described is shown in the directed graph of figure 4.1 and the same process can be

emulated using fGPs. The same inputs to the CPFE model can be used as input to the fGP de-

scribed in section 4.2.2. The loading parameter and displacement are treated as functional inputs

while the constitutive model parameters and microstructural features are treated as non-functional

inputs. Note, that the model as defined uses displacement as the driving deformation mechanism,

but this could equivalently be replaced with a specified force or traction on an RVE face. These

inputs are then used to train an fGP model that predicts the functional equivalent strain (ε, denoted

strain from hereon), and this in turn, is used alongside the previous inputs to train a second fGP,

which predicts the functional equivalent stress (σ, denoted stress from hereon). The choice here to

use equivalent stress and strain was made in order to obtain a scalar valued function that considers

all components of stress/strain. However, this choice is inconsequential and any individual com-

ponent of stress/strain could have also been used. In fact, all components of stress/strain could be

considered by either training one fGP network per component or by modifying the fGP normality

assumption to instead follow a multivariate normal. Further discussion on this extension is omitted

as the implementation of a multivariate fGP is beyond the scope of this work.
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Figure 4.1: A functional Gaussian process graphical network, which uses a loading parameter (λ),
displacement (uuu), constitutive model parameters (θ), and the microstructure morphology to predict
stress (σ) and strain (ε) in each grain and a mean response over a whole RVE.

In the illustrated graphical network, any set of microstructural features, such as those found by

Mangal and Holm [213] and those discussed by Bostanabad et al. [214], that describe the RVE can

be used. In AM, microstructures in many cases exhibit epitaxially grown columnar grains with dif-

ferent grain sizes and aspect ratios [184]. As such, in this work, a grain size- and shape-dependent

CPFE model [209] is used to generate the needed crystal plasticity data. It follows that the features

needed to describe grain size and shape, such as equivalent spherical diameter and grain volume, be

used to represent the microstructural RVE as a set of non-functional scalar parameters. In general,

this feature representation is done at the level of the whole RVE, but in this work, the feature repre-

sentation is done at the level of each grain in an RVE. This, first, means that each time-consuming

computationally-intensive CPFE simulation results in multiple stress-strain curves for each grain,

rather than a single stress-strain curve for the whole RVE. This increases the amount of data avail-

able for training and testing the fGP models, which will help improve the predictive capabilities of

the models. The drawback to this method of data collection is that the effect of boundary conditions

and grain interactions is not considered. However, as will be shown in the following sections, these

effects do not appear to significantly hinder the performance of the trained fGP model when given

a sufficient amount of training data. Second, working at the level of the individual grain helps to

directly relate grain size and shape features to the output stress-strain curve, rather than using dis-
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tributions of grain size and shape for a whole RVE. By ignoring microstructure grain distributions

and working with the individual grains, there are two means by which uncertainty is reduced. First,

uncertainty in the microstructure feature distributions is effectively uncoupled from the mechanical

property prediction, since there is typically not uncertainty associated with individual grains in a

microstructure from the process-structure linkage. Second, by predicting individual grain behavior

and then homogenizing, the variance of the predictive distribution, in general, is decreased since

the variance of the mean decreases with sample size. Additionally, using the homogenized RVE

response tends to mask the effect of small and elongated grains, which in the chosen constitutive

model generally have higher stresses than large and equiaxial grains. This point is illustrated in

figure 4.2 where some individual grains within a given RVE can have a stress of more than 3 times

that of the homogenized RVE value at the same equivalent strain.

Figure 4.2: Comparison of homogenized RVE stress-strain behavior (black line) compared to indi-
vidual grain behaviors from the same RVE (red lines) demonstrating how extreme gain behaviors
can be masked through homogenization.

4.4 Initial Network Training and Evaluation

To train the initial network in figure 4.1, microstructural RVEs must be generated to be pro-

cessed by the CPFE model. In AM, a single representative microstructure that is capable of rep-

resenting the whole microstructure is generally not possible to construct. However, RVEs can be
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constructed that contain a range of features (grain sizes, shapes, orientations, etc.) seen in the

whole AM microstructure and that can be considered representative of the overall bulk material.

As such, in this work, an RVE is defined as a volume element which contains a set of features

representative of a larger AM build made with similar process parameters. For initial network

training, 50 microstructural RVEs containing approximately 100 grains each are generated using a

CDIM [211] and then meshed using Simpleware ScanIP (Synopsys, Mountain View, CA, USA).

Complete details of the data generation process are given in section 4.2.1.

The generated RVEs contain features representative of those seen in single track AM mi-

crostructures [173] and a selection of the considered RVEs are shown in figure 4.3a. While the

RVEs may not strictly resemble typically AM microstructures as the CAFE model microstruc-

tures do, they do provide a range of features, such as grain shape and size variations, that are seen

in single track AM microstructures and that are needed to train the fGP network initially. The

generated RVEs are cubic and have dimensions in the range of 0.1-0.8 mm3. Periodic boundary

conditions are specified for all faces along each axis and the loading parameter here is linear with

time and monotonically increases from 0 to 10% of the RVE edge length . The displacement is

mapped such that it results in a linear, monotonically increasing displacement along the Y -axis in

the Y -direction. The model setup represents the loading portion of a uniaxial tension test. If more

complex loading behavior was desired, a simple change in definition of the loading parameter (am-

plitude) and uuu (direction) could accomplish that. The loading parameter definition will be valid

as long it is a real, unique, continuous function and uuu simply maps that amplitude to a specific

direction on an RVE face (i.e., loading the Y -axis in the Y -direction is tension/compression and in

the X- or Z-directions is shear). For instance, to address loading-unloading, the loading parameter

would be specified as increasing (with no requirement on linearity) from some time t0 until a future

time t1 then decreasing until another future time t2. This type of specification could be extended to

capture any non-monotonic or non-proportional behavior including cyclic or hysteretic behavior.

Uniaxial tension is chosen here for simplicity and demonstration of the fGP network concept. The

properties of 316L stainless steel are used for the constitutive model.
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Running the simulations, extracting the stress-strain curves for each grain, and using 70% of

the curves for training with the other 30% withheld for model evaluation, yields the data shown

in figures 4.3b and 4.3c. The training and test sets are chosen at random. The mean strain of all

these grains is around 10%, as expected based on the displacement magnitude and approximate

size of the RVEs, with a stress of approximately 450 MPa at that strain. The range of strain for

individual grains is between 8 and 15% with stress in the range of 325 MPa on the low end and,

on the high end, some grains exceeding 1500 MPa. The importance of capturing grain stresses and

strains far from the mean is based on the expectation that many grain with behaviors far from the

mean will tend to have a high stress or strain energy density and will have a high probability of

being a failure initiation site. Therefore it is crucial to be able to predict their their behavior. This

also gives reason as to why it is necessary to train the fGP framework on a per grain basis.
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(a) Selection of 4 RVEs from the 50 generated and used for training.

(b) Stress-strain curves of each grain (red
lines) in the training data set along with
the mean response of all the training data
(black line).

(c) Training stress and strain data shown
against the commanded displacement.

Figure 4.3: fGP Training Data.

For the purpose of training the fGP models, only the properties in the constitutive model that

are directly dependent on grain size and shape are considered. These are the grain yield strength,

initial strain hardening modulus, and grain boundary resistance. Note that other constitutive model

parameters, such as the stiffness tensor components, could readily be used in the parameter set but

they are omitted here for simplicity. Additionally note, that any derived constitutive model quan-

tities (e.g., slip system strength, material axis rotation, etc.) are not explicitly considered, rather

they are implicitly captured in the fGP since they will manifest as changes in the final stress-strain

behavior. The microstructural features used to represent each grain are the grain total volume,

three radii of an ellipsoid used to approximate the grain shape, and three angles representing the

grains orientation relative to a defined, global axis. This set of morphological features is chosen
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as they all can be directly and simply related to the size, shape, and orientation of the grains in

the AM microstructure. As with the constitutive model parameters, additional morphological pa-

rameters (e.g., texture, crystallographic orientation, Schmid factor, etc.) could be consider but are

not implemented here for simplicity and interpretability. The selection of the features chosen for

this work are specific for the AM process and the constitutive model used. In other manufacturing

processes, other features such as Schmid factor may be more important or more relevant and these

could be considered in the fGP in those instances. Furthermore, in ML, choosing a large number of

features can be detrimental to model performance as it results in more hyper-parameters that must

be tuned during training and more features can lead to lower model accuracy if those features are

not strongly correlated to the output. The model, as described, results in 12 total hyper-parameters

to be trained and training is done via maximum likelihood estimation (MLE). The number of func-

tional principal components (section. 4.2.2, equation 4.7) used is J = 3 and this captures > 99%

of the variability in the strain and the stress.

The overall results of the trained model on the withheld data can be seen in figure 4.4b, where

the predicted mean nearly overlaps the mean of the CPFE data, and corresponding error rates are

shown in table 4.1. Overall, the fGP network is able to predict the strain and stress to under 1%

error. These errors correspond to a prediction accuracy within 0.35% strain and approximately

20 MPa stress. The prediction of the stress will in general be better than the prediction of the strain

for two reasons. First, there is non-linearity in the constitutive model, which inherently means

that uncertainty will between stress and strain will be different. Second, since the stress fGP will

have additional information via the mean predicted strain, which helps to further differentiate data

points that would otherwise be similar. Note, however, that when considering the full predictive

strain distribution as the input to the stress fGP, uncertainty propagation methods would need to be

utilized and may result in a less accurate predicted mean stress with a higher predicted variance.
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Table 4.1: Error metrics for the trained fGP strain and stress models on the withheld grain data
set. MSE - mean squared error, MAE - mean absolute error, MAPE - mean absolute percent error,
SMSE - standardized mean squared error [212].

MSE MAE MAPE SMSE

Strain 3.282e−5 3.546e−3 7.834% 15.898

Stress 1326.6 MPa2 19.971 MPa 5.3% 22.995

A selection of four grain stress-strain behaviors and the corresponding fGP mean prediction

along with 95% prediction interval for those grains is shown in figure 4.4a. These results show

mostly expected behavior in that if the grain stress-strain behavior is close to the mean behavior,

the fGP can provide a good approximation, and as the grain behavior moves further away from

the mean, the prediction intervals gets larger. In some cases, such as the left two images of fig-

ure 4.4a, the predicted behavior has very narrow prediction intervals and the CPFE data does not

lie within those intervals. However, the important behaviors (e.g., modulus, yield, and hardening)

of individual grains tend to be captured very well by the fGP.

As mentioned above and as seen in figure 4.4a, the prediction of strain is more difficult than

the prediction of stress. This can be attributed to a couple of training data deficiencies. First, in

figure 4.3b, it can be noted that there is a high density of data around the mean, which will tend

to bias the fGP toward that region. Next, it can be noted that, in general, the strain-displacement

behavior is approximately linear for the majority of cases, but many grains can have significant

non-linearity in this behavior. These grains tend to have the lowest prediction accuracy as they are

outliers relative to the rest of the data. The reason for the presence of these non-linearaties is likely

due to boundary/traction conditions around the grain. This could be the result of a grain being on

the boundary of the RVE or the result of a grain being constrained by its neighboring grains. The

latter problem could be addressed potentially by accounting for physical grain boundary conditions

in the fGP. For instance, one could create a metric that defines the surface area of the grain in
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contact with another grain. However, this would be quite challenging and may not result in a

significant increase in model accuracy. To address the former problem, one would need to expand

the training data set to include more cases that exhibit a non-linear strain response, which could be

accomplished via different load paths, and would decrease uncertainty in the model. However, this

could prove challenging as well since the fGP suffers from the need to perform an O(n3) matrix

inversion during training. Therefore with more than a few thousand data, a significant training time

penalty will be incurred. This is known in the standard GP regression problem and exacerbated

in the fGP problem where training must occur on each of the J principal components. However,

methods exist to circumvent this issue and these will be discussed later.
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Figure 4.4: fGP Performance on Withheld Data

Recall that each RVE used during training contained approximately 100 grains. The fGP net-

work is now applied to three RVEs of a more realistic size as will be seen with the CAFE model

microstructures, containing upwards of 300 grains each, generated and simulated via the same

process as before (i.e., generation via CDIM, meshing via ScanIP, and CPFE simulation). The
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generated RVEs in these cases are 0.125 mm3. RVEs of this size generally take 60-90 hours of

computational time to generate the stress-strain response for a whole RVE on a high performance

computing system using 48 CPUs. This is in contrast to the 10-15 hours that the 100 grain RVEs

used for training take on the same computing system. Additionally, a larger RVE will result in

the boundary conditions having less influence on the overall RVE behavior and, in general, yield

a more representative behavior. As mentioned, the fGP does not explicitly take into account the

boundary conditions meaning that the learned behavior may be significantly influenced by the

boundary conditions. Before running the CPFE simulations, fGP predictions were made using

RVE features. Once the CPFE model was run, the stress-strain results for the whole RVE were

extracted as shown in figure 4.5 alongside the fGP predictions.
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Figure 4.5: Stress-strain results for three 300 grain RVEs not used for the training of the fGP
network. CPFE results took approximately 3 days of computation time on average while fGP
predictions with 95% prediction intervals took seconds.
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The corresponding error metrics are shown in table 4.2 and in general show slightly higher

error rates, as would be expected in ML on previously unseen data. However, the error rates are

still of the same magnitude as those seen on the withheld training data and are sub-18% in the

worst case, being sub-10% in the majority of cases, and in some cases are actually lower than the

rates seen on the withheld training data. RVE 1 (figure 4.5a) shows the highest error rates of the

three generated RVEs and can be attributed to a lack of sensitivity in the trained model. RVE 1 is

nearly equiaxial and, as such, the distribution of grain sizes and shapes is relatively small. In the

CPFE model, these small variations between grains are easily captured. However, in the fGP (as

well as many other ML models), small local variations in input parameters are treated as similar

to one another, even when they may not be, due to the characteristic length scale of the covariance

being larger than the relative distance between some points.

Table 4.2: Error metrics for the trained fGP strain and stress models on the three new 300 grain
RVEs as well as the total error rates for the combined data set consisting of approximately 900
grains.

MSE MAE MAPE SMSE

Total
Strain 5.924e−5 4.954e−3 10.645% 7.422

Stress 6710.9 MPa2 39.965 MPa 8.284% 19.094

RVE 1
Strain 1.24e−4 8.064e−3 17.626% 19.028

Stress 5415.9 MPa2 47.129 MPa 10.486% 41.846

RVE 2
Strain 3.816e−5 4.124e−3 8.601% 2.548

Stress 3271.9 MPa2 27.626 MPa 6.327% 8.982

RVE 3
Strain 2.193e−5 3.004e−3 6.429% 1.706

Stress 10847.2 MPa2 44.633 MPa 8.107% 8.375

Even considering the introduction of a small amount of error in the results, the reduction in
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computational cost (by three orders of magnitude) makes the fGP framework much more tractable

than running the CPFE model. As mentioned, RVEs of a sufficient size, such as those in figure 4.5,

can take between 60 and 80 hours to simulate on an HPC system. In contrast, the fGP network

data generation, training, and prediction took between 500 and 700 hours of time (50 RVEs at

10-15 hours on the same HPC system, 8 hours for training on a desktop, and prediction time was

negligible on a desktop). While there is a significant time investment to construct the fGP network,

the fGP network was trained in the same time as roughly ten CPFE simulations. However, the fGP

network can provide a much more expansive data set than 10 CPFE simulations. To demonstrate

this, the fGP will be used to examine how grain size and shape influence mechanical properties.

4.4.1 Grain Size and Shape Effects

To demonstrate the uses of the fGP network for future problems that may require many me-

chanical property predictions for various microstructures or microstructure distributions (e.g., opti-

mization or Bayesian sampling), a simple set of data with varied grain size and shape distributions

will be created and mechanical properties predicted without the use of costly CPFE simulations.

The data set consists of “microstructures" with average aspect ratios (shapes) of 1, 3, or 5 and

average grain volumes (sizes) of 1.891e−5, 2.029e−4, 2.178e−3, 2.338e−2 mm3. Distributions

of grain sizes and shapes are generated via 200 random draws from a log-normal distribution with

means as specified and standard deviations of 0.3 for the grain shape and 1 for the grain size. A full

factorial analysis is performed to generate 12 representative microstructures with 200 grains each.

Each of the 12 microstructure distributions is them simulated and homogenized via the fGP net-

work to generate predicted mechanical behaviors as shown in figure 4.6. Note that 95% prediction

intervals are available for each curve but are omitted for figure clarity.
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Figure 4.6: Stress-strain data from the fGP graphical network for the 200 grain “microstructures"
generated via specifying a grain size and shape distribution. AR - average aspect ratio, log(Vol) -
logarithm of the average grain volume.

The generation and mechanical property prediction of this data (all 12 microstructures) took

approximately 1 hour on a standard desktop computer. The majority of this time was spent con-

verting the input grain aspect ratio and volume into the necessary fGP inputs, which requires a

numerical double integration. In contrast, if one were to attempt to simulate the same 12 RVEs

with 200 grains using CPFE methods, each simulation would take upwards of a full day on an

HPC system. The benefit of using the fGP network becomes even larger when considering that the

time required has neglected the additional time needed to generate microstructural RVEs and mesh

those RVEs before the CPFE model can be run. The drawback of the fGP is that there is a small

amount of error introduced to be able to obtain these results so rapidly. However, this error will

be small (< 10% as demonstrated on the 300 grain RVEs) so long as the fGP is being used in an

interpolative manner (i.e., the microstructural features being input are in the range of those used

to train the model). In this case, this condition holds since the fGP was trained with data that had

higher and lower volumes and aspect ratios. If this condition is not met, then the accuracy of the

fGP network will quickly diminish.
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With regard to the results of the mechanical behavior, the mechanical properties show trends

that are consistent with the theory. A brief overview of this consistency is given here but the

interested reader is referred to [209, 215] for full information on the constitutive theory. First, it

can be noted that at a very small average volume (log(V ol) = −10) the aspect ratio has almost

no influence on the mechanical behavior, since the grain is already “saturated". As average grain

volume increase (regardless of aspect ratio), there is an initial increase in yield strength and a

decrease in the hardening modulus, but at a high enough volume the yield strength decreases

and the hardening modulus increases. This is indicative of the grain boundary effect being the

dominant effect at intermediate volumes, but above a certain volume threshold, the grain boundary

effect starts to diminish since the grain boundary volume is small relative to the overall volume.

The effect of aspect ratio is confounded by the size effect, but generally shows that smaller grains

with high aspect ratios produce a higher stress and this trend inverts with large grain sizes. The

noted points are all consistent with the theory and the CPFE results presented in [209], which gives

further credence to the accuracy of the fGP model and its ability to emulate the CPFE model well.

This has been a simple demonstration of the fGP network and its potential time-saving capabil-

ities, but this is a relatively small problem with only 12 microstructures that could be solved using

CPFE in a longer but doable time frame. However, even in this simple context, one can begin to see

how the fGP network can be used in PSP linkages to determine a desired microstructural feature

distribution that results in a specific mechanical behavior. For instance, if the goal was to maximize

yield strength then from figure 4.6, a target should be to achieve a microstructure with an average

volume of 2.178e−3 mm3 (log(V ol) = −6.2) and either an equiaxial structure (AR = 1) or high

aspect ratio structure (AR = 5). The true benefits of the fGP network are realized when consider-

ing an optimization problem or Bayesian sampling, where hundreds or thousands of microstructure

feature distributions may be needed to find an optimal solution or the desired parameter distribu-

tions. With a CPFE model alone, this would be intractable, if not entirely impossible. With the

fGP, this is not the case and the parameter space being explored can be thoroughly searched.
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4.5 fGP Network Retraining - CAFE Data

As a point of demonstration, a smaller RVE (56.25µm3) is extracted from the microstructure

shown in figure 3.1a to evaluate the performance of the fGP network that has been trained on

CDIM microstructures. As discussed, the concept of an RVE in AM is a bit of a misnomer, as

clearly there is no truly repeated, representative structure seen in figure 3.1. However, an RVE

with a representative feature set can be extracted. While the fGP network could be used to analyze

the full CAFE microstructure with many thousands of grains, that is not done here. The reason for

this being that the fGP network needs a point of comparison. This means that whatever is chosen

to evaluate the fGP network must be able to be simulated using the CPFE model, which is limited

to simulating a few hundred grains. To remove bias, the subset selection is done randomly within

the full microstructure. The chosen RVE and corresponding stress-strain behavior from the CPFE

and fGP models are shown in figure 4.7.
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Figure 4.7: Stress-strain data from the CPFE model as well as the fGP graphical network for the
shown RVE that was extracted randomly from the full microstructure of figure 3.1.

The results of the fGP network on the CAFE model microstructure are poor with much larger

errors than those seen during training/testing of the model. However, this is not unexpected as

the features seen in the CAFE RVE are significantly different than those seen in the original data
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set. As discussed, the fGP network is a data driven ML model so it can only accurately make

predictions on features with similarities to those it has seen before. As can be seen in the CAFE

RVE, the microstructure includes grains which are oriented along many different directions, have

many different aspect ratios, and many different sizes. However, during training of the fGP model,

the CDIM was used to generate microstructures with grains grown along a single RVE axis with

different aspect ratios and sizes.

Since the feasibility of the fGP network has been established by the previous section and in

order to address the shortcomings of training with CDIM data, the fGP network is retrained with

a subset of the microstructures generated in chapter 3. The results of retraining are shown in

figure 4.8 and in table 4.3. The predictions are shown on a test set that consisted of 30% of

the available data from the newly generated data set as was done before and the same CAFE

model microstructure that was used in figure 4.7. Note that the errors shown in table 4.3 for the

previous training are a different scale than shown in table 4.1 due to a change in the way error is

calculated. The change was made so that two microstructures with differing numbers of grains

could be compared (i.e., so predicted outputs from the PS linkage could be propagated through the

fGP network and compared to actual CPFE responses).
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Figure 4.8: fGP network predictions for withheld test data and a withheld CAFE microstructure
after retraining using CAFE model microstructures.
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Table 4.3: Mean absolute percent error (MAPE) for the previous and current retrained fGP strain
and stress models on the withheld grain data set and CAFE model microstructure.

MAPE (%)
Test Data CAFE data

Previous Current Previous Current

Strain 0.595 0.698 3.92 3.91

Stress 0.980 2.41 15.01 3.41

The retrained fGP models show approximately the same MAPE in strain before and after re-

training. However, the errors in stress increase for the test data but decrease drastically for the

CAFE data. The increases in error for the test set can be attributed to the increased variability in

the training data from the CAFE model microstructures. Likewise, the decrease in prediction error

for the CAFE data are a result of the training data exhibiting more varied features similar to those

found in the test CAFE microstructure thus resulting in a better prediction for a microstructure

from the CAFE model. Note, the microstructure used in figure 4.8b was generated using process

parameters that were not used in the training set and the microstructure implemented a different

scan pattern than the training data.

4.6 Discussion and Summary

This chapter has demonstrated the development and application of a functional Gaussian pro-

cess based graphical network. The fGP network emulates the simulation process for a CPFE

model, where displacement and other input parameters are used to determine strain then stress in

a grain. The fGP was initially trained using data from RVEs generated using a CDIM and then

retrained using CAFE model microstructures. Both sets of data were simulated using a grain size

and shape dependent CPFE constitutive model. Additionally, the amount of data was increased

from the available RVEs by training the fGP network on a per grain basis rather than a per RVE

basis. The fGP network was able to accurately predict new data from a test set and performed well
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on new RVEs generated by the same means as the training data, with differing numbers of grains

and, therefore, different boundary conditions. This result demonstrated the possible capabilities

of the fGP network to predict unseen data and the performance suggests that large CPFE models,

which are computationally too expensive to simulate, could be approximated well by the fGP net-

work trained using very small, more manageable RVEs with similar features. This is consistent

with the theory of using small statistical volume elements (SVEs, volume elements which individ-

ually do not capture the average response of the material) to approximate a much larger domain

[216]. However, the more traditional approaches require extracting SVEs from the microstructure

of interest, simulating those SVEs, and then homogenizing to approximate the behavior of the do-

main of interest. The novel approach taken here is much more general in that it learns feature sets

applicable to all microstructures exhibiting similar feature sets and does not require the repeated

simulation of SVEs.

Having shown the initial fGP network is capable of predicting unseen data, it was applied to

a simple problem of simulating 12 “microstructures" and proved to be consistent with the crystal

plasticity constitutive theory. The fGP network was able to make predictions on data three orders

of magnitude faster than the corresponding CPFE model (minutes on a single CPU compared to

hours/days on an HPC system). Additional time savings are realized when considering that the

effort required to mesh and fully define a CPFE model is not required to run the fGP network.

Of course, the fGP network also has some drawbacks and limitations, which primarily stem from

training data and data being predicted. Since the fGP is network is data driven ML model, it can

only accurately make predictions on features with similarities to those it has seen during training

(i.e., it is an interpolative model, not extrapolative). The less similar the unseen features are to the

features seen during training, the worse the prediction will be. However, this is the case with all

ML models.

The graphical network developed here provides a simple yet powerful data driven methodology

to capture the structure-property relationship in AM PSP linkages. Due to its relative simplicity, it

is extraordinarily flexible in that it is not limited to the CPFE constitutive model used in this work
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or even limited to GP based methods. While a specific CPFE constitutive model was chosen for this

work, the fGP network can be implemented on any crystal plasticity data, such as that generated

by spectral methods [217] or any other crystal plasticity constitutive model [218]. Changes to

constitutive model would require modifying the input features so that they are specific to the given

model, which then necessitates retraining of the network, but the core concept and framework is

still applicable. Since the graphical network directly emulates the crystal plasticity method and

predicts stress as well as strain, constitutive models containing damage and failure as well as

complex load histories can be used to train the fGP network. Damage and defects can also be

incorporated into the fGP network via the RVE by the inclusion of voids and/or cracks inside the

microstructure [219, 220]. The defects would be captured in the fGP network during the feature

selection process. The drawback to this process is that the network training can no longer be done

on a per grain basis and must be done on a whole RVE basis to capture defect distributions.

As mentioned, the framework developed here is not limited to GP based methods, but GP mod-

els have have the benefit of being well studied and easily modified. The extension of a standard GP

to the fGP shown in section 4.2.2 was straightforward and other modifications such as extensions

to multiple outputs, incorporating multiple fidelity data, and utilizing sparse methods for “big data"

[221, 222] can be incorporated into the fGP. The extension of the fGP to incorporate multiple fi-

delity data could allow for both fast spectral methods and traditional slower non-spectral methods

to be used simultaneously in the data generation and training processes. Sparse methods are the

most immediately relevant extension to the problem at hand where training the fGP on thousands

of grains using full rank methods becomes intractable, especially considering many of the grains

from different microstructures have similar input-output pairs and contribute no new information

to the fGPs.

Modifications to the input and outputs of the network could enhance the fGP network further.

This work has focused on a simple loading procedure where a single component of displacement

was specified, a monotonic linear loading parameter was used, and the equivalent stress and strain

were output as scalar functions. The specification of the input to include multiple components
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of displacement would be trivial and the fGP network does not need modification to account for

this. Likewise, the specification of a generalized loading parameter is possible , as described

above, as long as the loading parameter is a real valued, unique, continuous function. However,

by specifying a non-linear, non-smooth, or non-monotonic parameter, difficulty in data generation

(i.e., CPFE simulation convergence) could be encountered. Incorporation of multiple displacement

components and a complex loading parameter would allow the network to capture behavior such

as loading-unloading scenarios and non-proportional loading. While this work has focused on the

scalar functional equivalent stress and strain outputs, the fGP network can easily be extended to

include multiple functional outputs corresponding to the six components of stress/strain, either by

training multiple independent networks or by modifying the fGP to utilize a multivariate normality

assumption. With proper specification of the training data using combined loads (e.g., tension-

torsion), the trained fGP network could directly emulate the anisotropic material stiffness tensor

[223]. The implications of this are that Bayesian methods could be used to interrogate the trained

fGP network to determine the approximate full stiffness tensor values (i.e. material properties).

78
This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited.



5. AM PROCESS-STRUCTURE-PROPERTY SURROGATE LINKAGE

As has already been stated numerous times throughout this work, the establishment of relational

PSP linkages for AM is crucial. The surrogate models established in this work have been setup in

such as way that the outputs of one surrogate is the input to the next as shown by figure 1.2. This

makes the linking of these surrogates a natural process and with each of the surrogates created,

a demonstration of their linkage is shown. First, the test case from the MOGP model is propa-

gated through the fGP and the predicted properties compared for a CAFE microstructure versus

an MOGP predicted microstructure. Then, a demonstration of the full linkage where two sets of

process parameters are propagated through the entire framework. These two sets of inputs, and the

resulting microstructures, were not used in the training of any of the surrogates.

5.1 MOGP Test Case

As a first test of the developed surrogate models and their linkages, the test case of figure 3.4

is propagated through the PS and SP linkages. The output of this process along with the CAFE

microstructure used to generate the data is shown in figure 5.1 with errors quantified in table 5.1.

The first point that can be made is that the CAFE-CPFE (i.e., the true value) requires approximately

36 hours on a high performance computing (HPC) system using 144 CPUs in parallel. In contrast,

the CAFE-fGP solution requires approximately 8 hours, with the vast majority of the time and

resources being used to run the CAFE model, and the MOGP-fGP solution takes only a couple

minutes using a single CPU on a laptop. Next, it can be noted that the 2 predicted stress-strain

curves are very similar to the physics-based model outputs.
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Figure 5.1: MOGP test case predicted properties compared to physics-based modeling properties
with 95% GP predicted confidence interval.

Examining the error shows that, in fact, the predicted curves are all qualitatively and quantita-

tively similar. The error in predicted strain for the CAFE-fGP is approximately 1% and approxi-

mately 5% for the MOGP-fGP case. The predicted stress error for both is around 4 − 5%. Taken

together, this indicates that an orders of magnitude reduction in computational time is possible with

only a small penalty in error, which is to be expected with any predictive model. An additional

point that can be made is that the fGP alone seems to over-predict the mechanical properties, while

the MOGP predictions seem to bring that prediction back down and cause an under-prediction.

Table 5.1: MAPE for the predicted properties using the CAFE model microstructure and the
MOGP output distributions of the same microstructure. The errors are quantified near the yield
point, at the final increment, and over the whole curve.

MAPE (%)
CAFE input MOGP input

Strain Stress Strain Stress

≈ 1% Strain (Yield) 2.25 6.02 6.05 4.47

Final Increment 0.514 3.73 3.68 3.83

Overall 1.12 4.91 4.72 4.38
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5.2 New Inputs

To further examine the points made above and extend the predictions to include the MFGP

melt pool dimension predictions, two new sets of process parameters are chosen from the withheld

MFGP test cases and propagated through the full PSP linkage. These cases correspond to pro-

cess parameters (P, V, S) of (10W , 100mm/s, 300µm) for test case 1 and (600W , 300mm/s,

160µm) for test case 2. These two cases represent a good demonstrative set of points as they are

far from each other in terms of the process space. Case 1 is a low power, slow, wide beam whereas

case 2 is a more focused, higher power, faster beam. For case 1, this set of parameters is close to a

regime of where lack of fusion defects may occur, and for case 2, the parameters are close to the

keyholing defect regime. In both cases, the experiment images shows that a melt pool was formed

and did not exhibit keyholing or lack of fusion defects.

From these inputs, the process model surrogate is first queried. From this a classification of case

1 shows that the case is correctly classified as having no defect. Conversely, case 2 shows no defect

in the experiment but is predicted as having a defect by both the classifier and regression-based

classifier. As was discussed in chapter 2, LOF defects are easier to classify correct and case 1 was

closer to this regime so a better classification is expected. Similarly, keyholing defects were more

difficult to predict and case 2 is near the keyholing regime boundary hence higher probability of an

incorrect classification. Nevertheless, both cases will be propagated through the PSP framework,

even given the misclassfication, to assess the accuracy of the PSP linkage mechanical property

predictions. The predictions for melt pool width and depth are shown in table 5.2. The prediction

error rates of 5% and 9.5% for the width and depth, respectively, are similar to the validation set

errors presented in chapter 2, as one would expect. The predicted and actual values can now be used

as input to both the CAFE and MOGP models. Since experiment melt pool length is unavailable

to evaluate the trained MOGP and propagate to the CAFE model, the length for both the predicted

and actual values will be taken to be the melt pool length obtained by an FE model using the test

case process parameters. This means that for case 1 predicted and actual, the melt pool length is

assumed to be 375µm. Likewise for case 2, the length will be 745µm.
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Table 5.2: Melt pool dimension predictions and error for two test cases.

Test Case #
Actual (µm) Predicted (µm) Error (%)

Width Depth Width Depth Width Depth

1 320 84 307 76 4.06 9.52

2 176 64 186 58 5.68 9.38

The CAFE model microstructure RVEs from the melt pool dimensions of table 5.2 are shown

in figure 5.2. Qualitatively, the microstructures of both cases look similar between the actual and

predicted input melt pool dimensions. Quantitatively, when the tests for differences in distributions

of chapter 3 are applied to the predicted versus actual melt pool dimension microstructures, the

tests reject the null hypothesis at the 0.05 level that the underlying distributions are different for

all 10 parameters (i.e., there is not sufficient evidence to conclude that the microstructures are not

from the same larger volume). This is true for both cases. These tests are again applied on each

of the 4 microstructures to compare the CAFE model distributions to the predicted MOGP model

distributions. Unlike the test case of chapter 3, the hypothesis tests mostly indicate that the MOGP

distributions are the same as the CAFE distributions. For instance,the KS test does not reject

the null hypothesis for case 2 actual microstructure of figure 5.2c. However, the same data with

the kAD test does reject the null hypothesis. Overall, the predicted microstructure distributions are

substantially similar to the actual distributions so the data is next propagated through the SP linkage

to determine how differences in melt pool dimensions and microstructure distributions manifest as

changes in predicted properties.
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(a) Test case 1 actual
melt pool.

(b) Test case 1 pre-
dicted melt pool.

(c) Test case 2 actual
melt pool.

(d) Test case 2 pre-
dicted melt pool.

Figure 5.2: CAFE model microstructures for both test cases using both the actual and predicted
melt pool dimensions.

The predicted properties for both test cases are shown in figure 5.3 with 5 combinations of

predictions and actual PSP linkages shown. In both cases, the real property is the EXP-CAFE-

CPFE. What can first be noticed is that, as stated before, the fGP alone tends to over predict the

stress while the models with an MOGP estimate tend to underestimate the stress. Strain does

not appear to follow this same behavior. The fGP demonstrating this consistent over-prediction

behavior is unique to the sets of RVEs examined in this work and a result of the data that the model

was trained on. On average, the fGP tends to over-predict mechanical properties as demonstrated

in figure 4.8a, but in many cases will also under-predict the mechanical properties. The under-

prediction from the MOGP has to do with learned features from the microstructure and how the

constitutive model handles these features. The underlying constitutive model is affected by grain

size and shape such that very small or very elongated grains have a strain hardened effect. Due

to the way that the quantile and normal transformations are done in the MOGP, the predictions

tend to be more concentrated at the central portion of the distribution. In the central portion of

the distribution, the predicted grain parameters tend to be less elongated and of a more moderate

size resulting in a lower prediction of mechanical properties. The effect of the MFGP predicted

melt pool versus the actual melt pool appears to be small and shows no consistent over or under

prediction affect on the mechanical properties.

83
This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited.



0 2 4 6 8 10
Strain, %

0

100

200

300

400

500

600

700

St
re

ss
, M

Pa

0.5 1.0 1.5350

400

450

9.5 10.0 10.5550

600

650

EXP-CAFE-CPFE
EXP-CAFE-fGP
MFGP-CAfE-fGP
EXP-MOGP-fGP
MFGP-MOGP-fGP

(a) Average response of withheld data after re-
training.
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(b) Predicted response of a CAFE RVE after re-
training.

Figure 5.3: fGP network predictions with 95% confidence interval for withheld test data and a
withheld CAFE microstructure after retraining using CAFE model microstructures.

The most important results of figure 5.3 are the comparisons between EXP-CAFE-CPFE and

MFGP-MOGP-fGP, which represent the comparison between a physics-based PSP linkage and an

ML-based PSP linkage. This comparison is shown in figure 5.4 and tables 5.3 for both case 1 and

case 2. The primary comparison to be made here, again, is that the physics-based linkage requires

multiple days of experimental and computational time whereas the ML model, once trained, re-

quires only a few minutes of resources on laptop. The cost of this resource reduction is an error

penalty of around 5% and < 10% at the single worst point for an orders of magnitude speedup.
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Figure 5.4: PSP linkage mechanical property predictions for the actual physics-based approach
and the predicted ML approach with 95% confidence interval.

Table 5.3: MAPE for PSP linkage mechanical property predictions for the actual physics-based
approach and the predicted ML approach. Error is quantified at approximately the yield point, the
final increment, and as an average over the whole prediction.

MAPE (%)
Test Case 1 Test Case 2

Strain Stress Strain Stress

≈ 1% Strain (Yield) 1.57 4.60 9.26 8.35

Final Increment 1.02 3.03 4.78 5.98

Overall 1.54 3.97 6.65 6.90

The trade-off in resources and error is well understood for other problems and, depending on

the specific application, is worthwhile. The ML-based PSP linkages would not be ideal for making

the best possible prediction of mechanical properties resulting from a set of process parameters,

but make it possible to sample an entire space of process parameters in a reasonable amount of

time for Bayesian analysis or optimization problems. This could result in a first approximation
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of the best solution to a given problem or a small range of process parameters that result in the

desired mechanical properties. This could then be augment with a few simulations to further

refine the solution and finally a single experiment to verify what was found. Without the ML-

based PSP linkage, this process could require 100s of experiments to obtain the same solution

and resource constraint would likely limit this to 10s of experiments, almost guaranteeing that an

optimal solution would not be found.

One issue of note with the predictions in figure 5.4 are that the actual solutions do not fall

within the confidence interval (CI) from the fGP. This is a result of the CI only being the predicted

standard deviation from the fGP model. In order to get a complete CI, uncertainty propagation

from the beginning process parameters is necessary. While doing this is beyond the scope of this

work, other works have already demonstrated the feasibility of linking multiple GPs in AM then

quantifying and propagating uncertainty using Bayesian approaches.[78] Doing so would increase

the CIs of the predicted values and, given the small difference between the actual and predicted

values, would result in the actual value being encompassed by the CI of the predicted value.
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6. SUMMARY AND FUTURE WORK

6.1 Summary

A GP-based PSP relation linkage for L-PBF 316L stainless steel has been developed and

demonstrated. This linkage, first, classifies a set of process parameters to determine if a porosity

defect may occur. The linkage, next, relates the process parameters to melt pool dimensions, then

links these to microstructure statistics, and ultimately to mechanical properties through a series of

3 GP surrogates. Each of the surrogates is trained on a limited set of data and demonstrated good

predictive accuracy through validation either using a test set method or cross-validation method.

For the process modeling surrogate of chapter 2, four fidelities AM thermal data were sampled

using a nested Latin-hypercube sampling scheme. A multi-fidelity non-linear auto-regressive GP

was implemented, including the development and demonstration of a novel GP-based classifica-

tion method. The classification results demonstrated mixed results but overall showed adequate

performance with roughly 80% accuracy. The multi-fidelity regression results were able to predict

melt pool width with 95% accuracy and melt pool depth with 90% accuracy. The regression results

demonstrated significantly better performance over standard single fidelity GPs.

The process-structure surrogate linked melt pool dimensions from the process modeling to

microstructure statistics using an MOGP. The MOGP extracted information from CAFE model

microstructures, transformed the data, and then related melt pool dimensions to 4 PCs. Cross

validation results showed good agreement between predictions and actual values. A test case, once

reconstructed was qualitatively good but quantitatively not in agreement with underlying data.

Further test cases, when propagating information through the entire PSP linkage, showed both

qualitative and quantitative agreement.

In the structure-property surrogate, microstructure statistics from both CDIM and CAFE mi-

crostructures were used to drive a CPFE model which generated the data necessary train an fGP.

This fGP linked microstructure features, such as grain size and aspect ratio, to uniaxial stress-strain
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behavior. A surrogate modeling framework consisting of two networked functional GPs was es-

tablished and its efficacy was demonstrated on a test data set. Furthermore, the fGP network was

demonstrated to be accurate on a test data set that was previously unseen and a sample application

of the network was shown. Limitation of the fGP network were addressed by retraining the fGP

using data from only CAFE model microstructures. The retrained model demonstrated comparable

accuracy on a test data set to the CDIM trained model but with a much richer feature set used dur-

ing retraining. Predictions with the retrained model showed an order of magnitude improvement

in accuracy on an unseen CAFE microstructure.

The developed process model, PS, and SP surrogates were finally linked and shown to be

accurate on two previously unseen sets of process parameters. Yielding around 95% accuracy in

the mechanical property predictions with an orders of magnitude reduction in prediction time. This

process also demonstrated predictions of melt pool dimensions and microstructure statistics that

were similar to the expected error rates based on the validation data.

6.2 Future Work

One advancement that could be applied to all of the surrogate models in this work is the incor-

poration of physics-informed neural networks (PINNs) instead of GPs.[224, 225, 226, 227, 228,

229] While GPs exhibit a favorable number of attributes, they suffer from a number of drawbacks

in scaling to large datasets and, in particular, capturing and considering physical constraints. The

lack of physical constraints is well documented in many ML models and is a growing concern as

ML becomes more and more prominent in science and engineering. PINNs are a new class of neu-

ral network that can be trained to learn the underlying physics of the problem. While PINNs are

still in their infancy, their application in this framework would increase its flexibility and ensure

that the physics of AM are being properly accounted for.

6.2.1 Process Modeling Surrogate

First, more process parameters (e.g., hatch spacing, raster pattern, etc.) and powder proper-

ties can be consider to improve the flexibility of the model. With more multi-track AM thermal

88
This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited.



models being developed, the consideration of a process surrogate that accounts for full scan pat-

tern/histories can be constructed. The full scan surrogate could be accomplished by modeling the

spatial fields using one latent subspace [230] and the temporal fields by the fGP surrogate shown in

chapter 4. By capturing the full spatial-temporal thermal history, quantities such as the melt pool

dimensions and the solidification gradient could be directly obtained from the surrogate output

for the full mesoscale part build. Since these methods are still based on GPs, then the developed

processes of this work would still be applicable. In particular, an MFGP could be constructed that

combined NEASM and experimental scan histories. This, however, still would not address a lack of

melt pool length prediction for the experiments. As mentioned, one method to obtain information

about melt pool length measurements (beyond measuring them in-situ) is to have a multi-output

variation of the MFGP where there is coupling between the melt pool dimensions. Combined with

Bayesian analysis, the missing experimental melt pool length data could be imputed. Due to the

hierarchical nature of the MFGP implemented in this work, a multi-output extension is possible

without significant alterations to the model. In the classification setting, extensions of the nonlinear

multi-fidelity GP to multi-class classification could improve the classification algorithm. However,

multi-class GP classification is a much more difficult problem than the binary case implemented

in this work and would almost certainly require training via Markov-chain Monte Carlo or similar

approximation methods.

6.2.2 Process-Structure Surrogate

As with the process modeling surrogate, the PS surrogate could be modified to account for more

scan patterns and be extended to account for more features from the process model, such as solid-

ification gradient, or additional features from the microstructure like spatial or two point statistics.

The advancement to PINNs, as discussed, is a possible avenue for improvement of this model.

However, an additional avenue that can be explored is the construction of true microstructure emu-

lator using a generative adversarial network (GAN) or a similar deep learning-based auto-encoder.

GANs like PINNs are a relatively new and advanced technique but are rapidly being deployed to

model physical phenomena.[231, 232, 233, 234, 235, 236, 237, 238, 239] A number of these works
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have even begun to consider the task of microstructure generation either from scalar parameters or

from 2D exemplars.[160, 240, 159, 241, 158, 242] Again however, there is considerable research

still to be done in order to represent microstructures as complex as those produced in AM in 3D.

Since GANs are based on deep learning techniques, transfer learning could be of considerable im-

portance where a GAN could be trained initially using kMC or CAFE microstructures, then later

retrained on a much smaller dataset of experimental microstructures.

6.2.3 Structure-Property Surrogate

There are a number of possible improvements in the SP surrogate, some of which have already

been discussed in chapter 4. One immediate modification that can be considered is to account

for complex load paths such as non-proportional loading. One of the larger tasks that could be

undertaken with this surrogate is to utilize combine load paths to generate sufficient data that a full

representative material stiffness tensor could be extracted. By doing this, microstructure features

could be linked to the micro/meso-scale properties and then those properties used in a macroscale

analysis of a full part. The scaling to a full part is enable by the fact that the fGP network can

be scaled to predict mechanical properties of large microstructures, far beyond those able to be

simulated with CPFE approaches. As such, the fGP network has the potential be implemented in

a multi-scale material modeling framework.[243] In this framework, the fGP network could act as

the solution to a localized, micro/mesoscale problem and inform the larger macroscale problem.

In doing so, the computational cost of a multi-scale problem would essentially reduce to the cost

of solving only the macroscale problem.

Another application of the fGP is for Bayesian calibration and optimization. While Bayesian

analysis of the PSP linkages will be discussed more in the subsequent section, it is worth discussing

here the possible use of the fGP to aid in calibration efforts. A major barrier to using many of the

developed CPFE models is obtaining appropriate and sufficient constitutive model parameters.

Traditional methods involve either trail-and-error approaches or a extracting properties from data

in literature or previously used value in literature. This is obviously not an ideal approach as it can

be time consuming and result in an inaccurate model or possibly an inability to even identify the
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necessary parameters. Since the fGP can be trained to account for constitutive model parameters, it

can essentially emulate the whole crystal plasticity constitutive model and be trained on synthetic

data. Since it has such a low cost to sample, the fGP could be used in an optimization workflow to

efficiently and more accurately identify constitutive model parameters for new materials that have

been tested. Furthermore, a Bayesian approach could be taken to identify probability distribution

associated with these parameters and which are most likely or which have little to no influence on

the resulting model.

6.2.4 Process-Structure-Property Linkage

While individual improvements to each underlying surrogate of the PSP linkage are possible,

one of the most necessary tasks for the framework on the whole is uncertainty propagation (UP)

and uncertainty quantification (UQ). As established and demonstrated the current framework has

a clear linkage where one output is the input to the next model. However, since each of the models

are based on GPs, each model actually has normally distributed outputs with an estimated mean

and variance rather than a scalar value. The propagation of these distributions through the frame-

work will have a substantial impact on the predicted values of each model and the corresponding

uncertainty. Ye et al. [78] has already established and demonstrated a methodology that could be

applied to the models of this work as well.

Performing a Bayesian analysis of the framework will have a number of benefits. First, it will

aid in the determination of which surrogate model(s) results in the largest sources of error. This

will demonstrate where improvements discussed above should be focused and where the best return

on time spent will be obtained. Doing this Bayesian analysis will also demonstrate the feasibility

of sampling the linkage 100s or 1000s of times. Once it is determined to be feasible, a number

of other problems can be undertaken. First, sensitivity analysis to assess how changes in process

parameters manifest as changes in microstructure features and mechanical properties, and which

process parameters and microstructure features have the most impact on mechanical properties (as

was demonstrated in section 4.4.1), which are most likely to result in high stresses or strain energy

densities, potentially leading to material failure. Next, inverse PSP linkages will be possible with
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the developed framework once setup in a way that it can be sampled thoroughly. Inverse PSP

linkages will allow a given/desired mechanical property to be input and the framework can be

sampled until a set of process parameters is obtained that results in those properties. Finally, it is

also possible, and potentially desirable, to generate a final surrogate ML model that encompasses

the 3 surrogate models of this work, creating a direct linkage between process and properties.

In doing so, the speed at which data could be generated would further increase to real time. This

would make an online system feasible and could be used as part of the controller in an AM machine.

6.2.5 Experimental Validation

While validation, in the ML sense, has been done for each model, there has been no experimen-

tal validation effort beyond the process model surrogate. For the process-structure and structure-

property surrogates, experimental validation can be done for the underlying physics-based model

and the surrogate can be considered validated if the validation set data used to evaluate the surro-

gate shows sufficient accuracy. This assumption is based on a transitive property of the validation

in that if the physics-based model is validated by showing a high enough accuracy on an ex-

perimental data set, and the surrogate is validated by showing a high accuracy in emulating the

physics-based model, then this implies that the surrogate would also demonstrate a high accuracy

on the experimental data set. For the PS model, a full validation effort would involve the collection

of multiple 3D microstructures produced by a known set of process parameters and with known

melt pool dimensions. While this task is technically possible, it would be prohibitively expensive.

In lieu of this, 2D sections can be collected and compared to the CAFE model outputs as was done

in [157]. Thus, the PS model can be consider validated by the means described above.

For the SP model, however, there is no such validation of the underlying CPFE model. How-

ever, once it is validated, the fGP could be considered validated as discussed. One method to

achieve a validated CPFE model would simple be to change to a different already validated model

and retrain the fGP. This is a rather trivial solution but one that would work. An alternative would

be to perform both calibration and validation of the current CPFE model by leveraging the already

developed fGP network. Experiments using ASTM dog bone tension specimens built using L-PBF
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and 316L powder would be required to validate the model. These specimens would be printed as

solid rectangular blocks and then cut to ATSM standard sizes to avoid surface defects that could

influence the mechanical behavior. Simple tension tests would be performed using the samples.

Some of the tests will be randomly selected for calibration, while the remaining tests will be used

for validation. An additional challenge here, is that the process parameters would be known but

not the microstructure. To obtain the microstructure would necessitate the collection of 3D EBSD

data for multiple specimens or the reconstruction of 3D AM microstructures from multiple per-

pendicular 2D exemplars. EBSD in 3D is not trivial and obtaining even a single sectioned 3D

sample can take weeks. Additionally, as was mentioned in chapter 3, the reconstruction of AM mi-

crostructures from 2D exemplars is not well established. An alternative solution to the calibration

and validation of the SP surrogate without obtaining microstructure information is to leverage the

full PSP surrogate linkage and jointly validate the SP surrogate and the PSP surrogate.

Recall that the fGP network can be used to calibrate parameters of a constitutive model by

retraining the fGPs to account for those parameters. In order to perform a joint calibration and val-

idation, it will be necessary to perform this retraining of the fGP surrogate. By adding the CPFE

constitutive model parameters to the fGP and the whole PSP linkage, Bayesian calibration of the

parameters can be accomplished by sampling the PSP linkage with a known set of process pa-

rameters until a minimum error is achieved between the calibration experiments and the surrogate

model prediction. In order to properly do the model calibration, knowledge of the microstructure

along with the corresponding mechanical properties is needed. But as stated, gathering informa-

tion about the microstructure can be difficult/infeasible. In lieu of this, the microstructure can be

assumed to be unobservable. The approach to calibration with unobservable variables is similar to

the work of Mahmoudi et al. [70], except all components of the PSP linkage will be used. Once

the calibration is complete, the obtained constitutive model parameters can be input to the CPFE

model to compare the physics-based predictions to the experiments. If the CFPE and experiments

agree reasonably well, the constitutive model parameters in the fGP network can be fixed and the

process parameters unfixed. This process would result in a validated CPFE model and, by the
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method discussed above, a validated fGP network. Finally, the process parameters for the valida-

tion experiments can be input to the PSP linkage and predicted mechanical properties obtained then

compared to experiments. If the results agree then the whole PSP framework can be considered

validated.

6.2.6 Materials Design

A final application and modification that can be made to the developed framework is to extend

it beyond a single material and AM process. While the framework has been developed and trained

using a L-PBF and 316L stainless steel, there is nothing in the framework that limits it to a single

material or process. In fact, each of the GP models is quite flexible and could be modified to

account for additional materials or constitutive parameters as part of the input parameter space. By

expanding the set of material parameters that each surrogate model is trained on, specific material

attributes can be linked to resulting properties. This would enable materials design to further

enhance the attainable properties from AM.

An interesting concept for materials design, that goes beyond simply having multiple materials

in the trained models, could be to train the GPs in such a way that material composition is consid-

ered. There is ongoing work where chemistry of arbitrary alloys can be obtained from CALPHAD

and be combined with the Eager-Tsai solution to create printability maps without having a defined

material composition a priori. A similar approach could be applied to the physics-based models

in this work where, from these compositions, material parameters for the thermal, microstructure,

and mechanical models could be obtained. This process to obtain the necessary material parame-

ters from a given composition would be daunting but, ultimately, doing so would allow materials

scientists to study desired compositions that result in properties of interest. Furthermore, by ap-

plying the workflow developed here to the composition-agnostic models would drastically reduce

the time to explore the search space for possible new AM material candidates.
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