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EXECUTIVE SUMMARY

The use of live and computational animal models as surrogates for human testing has gained considerable
recent momentum in the investigation of traumatic brain injury. While animal subject testing provides
valuable information and data that can also be used for the validation of models, its scope is restricted by
ethical concerns, cost, and data with insufficient granularity. Computational models, therefore, act as vital
supplementary resources as they reduce these constraints and improve the understanding of blast effects. The
creation of computational models requires not only an accurate geometric description but also a calibrated
constitutive model to predict material behavior.

This report details the process involved in generating a calibrated constitutive model. First, a constitutive
model form that can sufficiently capture the phenomena that occur in the experimental data is chosen based
on the latest available literature for each material identified in the geometric model. The constitutive model
forms chosen are then detailed and reduced to a functional form compatible with the available experimental
data. An optimization scheme is then detailed with the purpose of estimating the constitutive model param-
eters by minimizing the error between the model predictions and the experimental data set. This process
is repeated for each material system identified in the geometric models of a human head and the head and
upper torso of a pig. The result is a modular methodology for future model developers to reference.

E-1
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BIOMECHANICAL MODELING OF THE HUMAN HEAD

1. INTRODUCTION

A 2008 RAND report estimates that nearly 20 percent of deployed service members experience some
level of traumatic brain injury (TBI) with as much as 70 percent of those injuries coming from blast, which
is the primary cause of mild TBI (mTBI) [1]. The exact injury mechanisms in mTBI are not well under-
stood and for obvious reasons the blast events cannot be replicated in vivo on human subjects. Thus, in
order to better understand mTBI, researchers must rely upon computational simulations [2-9]. Live an-
imal models, e.g., pigs, are also now being used as surrogates to study TBI in humans [10-13]. Due to
ethical considerations, cost, and insufficient granularity of data, live animal testing is also being comple-
mented and supplemented by computational modeling [14, 15]. The development of these computational
and mathematical models, however, is fraught with issues [16]. One such problem is the determination of
appropriate constitutive models and parameters. Many biological materials exhibit large strain and time-
dependent anisotropic elasticity with a hysteretic unloading behavior and tension-compression asymmetry.
Obviously, to capture this behavior numerically would require an incredibly complex constitutive model.
While some researchers have developed highly complex models to capture many of the observed behaviors,
these models require a prohibitively large number of parameters not easily obtained [17, 18].

This report seeks to determine and calibrate an appropriate constitutive model for each component of
computational models of a human head and the upper torso and head of a pig. These computational models
contain all major differentiable components from high resolution computed tomography (CT) and magnetic
resonance imaging (MRI) scans. The mechanical difference between components in the human and pig is
small [19] and as such they need not be calibrated separately. The remainder of the report is structured into
three primary sections. First, a description of the modeling approach and calibration technique is given,
which details constitutive model selection and parameter estimation methodology. Next, the parameters
values selected for each component in the computational models are discussed. Finally, a summary and
conclusions are provided. In addition, there is an appendix with tables summarizing the chosen models and
final parameters; this table is intended to assist future researchers and reduce the time required to develop
new computational models.

2. CONSTITUTIVE MODELING

When quantifying the mechanical properties of a given material, whether structural or biological, it
is most convenient to start with the assumption that, at a minimum, stress-strain data is available. The
generation of stress on a body is due to the work done by surface or body forces. This work is stored inside
the body in the form of strain energy, U, given by

U:/VWdV (D

Manuscript approved August 11, 2017.



2 P. Brewick et al.

where W is the strain energy density (strain energy per unit volume) and V represents the volume of the
system. The strain energy density is directly related to stress and strain as it constitutes the area under a
given stress-strain curve, which can be visualized by Fig. 1. This relation is expressed more generally by
Eq.(2) as

W:/G:de @)

where ¢ and € are the stress and strain tensors, respectively. The strain energy density function is ideal
for material characterization because it can be generalized to capture any stress-strain curve or available
experimental data set. This flexibility in modeling stress-strain relations also makes strain energy density
highly useful for materials with more challenging properties, such as those found in the human body. The

v

€

Fig. 1: Example stress-strain curve demonstrating how strain energy density is obtained. The shaded area
beneath the curve represents the strain energy density for a uniaxial stress

human body possesses myriad components that can be readily seen in any anatomy textbook or atlas. In
practice, the identification of these components depends on the available resolution of images taken with CT
and/or MRI scans. Once identified, the different components may be digitally segmented, i.e., differentiated
within each image, for use in a computational model [20, 21]. Each of the identified components requires a
constitutive model whose parameters must be further identified and calibrated based on experimental data.
Accumulating the data needed to calibrate such a large number of constitutive models is a tremendous task,
especially for a single research group; thus, it is most beneficial to take advantage of published studies in
the available literature. Table 1 presents a summary of the segmented biological components for a model of
the human body along with the constitutive model forms considered to best represent each material and the
experimental data sources used for model parameter calibration.
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Table 1: Biological Components of the Computational Model of a Head and Torso with
Corresponding Constitutive Model and Data Source

Component Constitutive Model Source
Sinus - Frontal
Sinus - Maxillary Equation of State a
Airway
Cerebrospinal Fluid (CSF)
Ventricles - Lateral
Ventricles - Third
Ventricles - Fourth Equation of State\Hyperelastic [22, 23]
Ventricles - Aqueduct of Sylvius
Ventricles - Foramen of Monro
Venous Sinuses and Bridging Veins
Eyes (Vitreous) Equation of State\Hyperelastic [22, 24]
Venous Sinus and Bridging Vein Walls  Anisotropic Hyperelastic [25, 26]
Pia Mater Hyperelastic [27, 28]
Dura Mater Hyperelastic [28, 29]
Falx Cerebri Hyperelastic [30]
Tentorium Cerebella Hyperelastic [30]
Sclera and Cornea  Hyperelastic [28, 31]
Intervertebral Discs Hyperelastic [32]
Costal Cartilage Hyperelastic [8, 33]
Skull - Cortical ~Transversely Isotropic Viscoelastic  [34]
Skull - Cancellous  Transversely Isotropic Viscoelastic  [35, 36]°
Mandible Transversely Isotropic Viscoelastic  [37]
Vertebrae  Viscoelastic [32]¢
Ribs Viscoelastic [34, 38]
Sternum  Viscoelastic [32]¢
Cerebrum - Grey Matter . .
Cerebellum - Grez Matter }Hyper—wscoelastlc (8]
Cerebrum - White Matter
Cerebellum - White Matter
Brain Stem - Medulla
Brain Stem - Midbrain Hyper-viscoelastic [8]
Brain Stem - Pons
Spinal Cord
Optic Nerves )
Skin  Hyper-viscoelastic [8, 39]
Heart Hyper-viscoelastic (8, 40714
Lungs Hyper-viscoelastic [41, 42]
Muscles  Hyper-viscoelastic (8, 4074
Soft Tissue (Aidpose) Hyper-viscoelastic [8, 39]

2 The familiar properties for air at 37 °C and ambient pressure of 1 atm were used.
b Values from [36] not taken directly but scaled based on available data.
¢ Values from [32] not taken directly but scaled based on available data.
d Values from [40] not taken directly but scaled based on available data.
Note: Components grouped with a brace } share parameters for their respective constitutive model.
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With proper constitutive models forms chosen based on experimental evidence, it is beneficial to derive
the stress-strain relationship for each of the forms presented. The derivation for each model begins from
the strain energy density of Eq. (2). Note, in cases where an equation of state was used, the derivation does
not begin from the strain energy function as it is not relevant to those material systems. Also note that each
derivation will only be shown for a uniaxial case. The procedure to derive a three-dimensional stress state
is the same, but those derivations are omitted here for simplicity and brevity.

2.1 Stress-Strain Relationships

First, the simplest case of a purely elastic material is derived to demonstrate the method by which the
remaining materials are derived. Using the familiar strain-displacement relations and Hooke’s law for elastic
materials, W can be expressed as

1
W= / Eede = 5Eez, (3)

where € is the axial strain and E is the elastic or Young’s modulus. For more complex material systems that
exhibit large non-linear deformations, it is most convenient to formulate the constitutive model in terms of
the strain energy density rather than using a Hooke’s law approach. The axial stress, o, can be obtained
by taking the derivative of W with respect to &, giving the familiar constitutive relationship for an elastic
material as

°Tde ~

Ee. “)

2.1.1 Viscoelastic

For materials exhibiting a linear time dependent viscoelastic behavior, the stress is related to velocity
and can be represented by

O‘(t):/otdd(t):/OIC(I—T);ZTE(‘L')CZT, ®)

where C(¢) is a time-dependent elastic modulus tensor. This time-dependent tensor may be expanded as
C(t) =Csglr) (©)
where Cj is the canonical elastic modulus tensor for an isotropic, linear elastic solid [43] and g(¢) is some

relaxation modulus. A generalized Maxwell model is commonly used to define the relaxation modulus [44];
the Maxwell model is represented by a Prony series of M terms as

M
() =1-Y g (1-exp/7), ™
=

where g; is a normalized modulus and 7; is a material time constant. Using Eq. (6) the stress may then be
rewritten as

G (1) = /Otg(t _ r)Cs%e(r)dT _ '/Olg(t— 7) % (Ce (1)) dr. )
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Note that the second modification may be made since Cj is a constant matrix; while it might seem counter-
intuitive to place this matrix inside the derivative operator, it is convenient to have the matrix product Cs€.

Under the assumption of a uniaxial stress state for an isotropic homogeneous material, the shear strains
within € are set to zero and, through the use of Hooke’s law, the remaining strains share the relation &) =
€3 = —VE, v is Poisson’s ratio. These simplifications with respect to strain produce a stress vector with a
single non-zero entry, just as the uniaxial name would imply; thus the matrix product C¢€ can be reduced to
a single non-zero component o7 written in terms of the only independent strain &;;

ot /gt—rj[( )?1_2‘/) ((1—v)—2v2)£11}dr. 9)

Several simplifications may be made by canceling out the terms in the numerator and denominator and
substituting the full expression for the relaxation modulus in Eq. (7), producing

Gll(t):/otE

Assuming a linear relationship between strain and strain rate such that €1 (7) = £t and % (&11) = € yields

a(z)_/O'Ee

In the final equation, the required constitutive model parameters are the elastic modulus, E, the non-
dimensional moduli, g;, and the material time constants, 7;. Note that g; is restricted such that ZZ}’IZI gi< L

J=1

M
. d
1-Y g (1 —exp 77/ )] - (en)dr. (10)

M
1-Y g (1 —exp—<’—f)/ff)] dr. (11)

j=1

2.1.2  Hyperelastic

There are a number of hyperelastic constitutive models available to describe a material exhibiting large
strain elasticity. For the case of biological materials, which are generally incompressible or nearly incom-
pressible, the constitutive model forms are limited to those that are derived to model rubber-like nearly
incompressible materials. The most common forms of hyperelastic models derived for this purpose are the
Ogden model and the variants of the generalized polynomial model. As mentioned previously, a material
exhibiting a hyperelastic-type behavior is generally easier to represent by directly forming a strain energy
potential; thus, this potential is the starting point of the proceeding derivations.

Ogden Model

Starting with the Ogden model [45] produces

M=

W = %(Al Ay Ay —3) (J€”—1>2i, (12)
i=1 "

L
«D;

\\Mz
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where N controls the order of the Ogden model and A i=J -5 ; with A; being the principal stretches and J
the total volume ratio defined as J = A; A2 A3. The total volume ratio is related to the elastic volume ratio J¢/
from Eq. (12) as

Jel = = (13)

where J'* represents the volumetric deformation due to thermal expansion; in the absence of thermal ex-
pansion, J¢ simply reduces to J¢ = J. The parameters L;, @;, and D; are related to material properties.
Specifically ; is related to the inital shear modulus Gy by

N
Go=Y . (14)
i=1

The parameter D is related to the initial bulk modulus Ky as

2
Ky = —. 15
0= D, (15)

There is also an important relationship between the initial shear modulus and bulk modulus of a material
and its Poisson’s ratio. The Poisson’s ratio may be computed according to the following relation

3Ko/Go—2
_ 3Ko/Go=2 (16)
6Ko/Go+2
where this expression is often used as a means of assessing compressibility. Equation (12) may be simplified
by assuming that the material is completely (or nearly) incompressible, thus J = 1 and the strain energy
density becomes

10; (A% 4 A% 4 A% = 3). (17

Mz

W=

For the incompressible material under an axial stress state, the principal stretches are related by A, = A3 =
A 1/ 2, and this allows the strain energy density to be simplified to

=

I
—

w=y L (/Il""'+2/11‘“"/2—3>. (18)

i

The uniaxial stress, ¢, can be easily determined to be

u 21 i—1 —0;/2—1
e ]

The required constitutive model parameters for the uniaxial Ogden model are the moduli, y;, and material
constants, ¢;. In this model, the selection of w; must follow the constraint, ny:l W; > 0. This constraint
ensures that the initial modulus, gy = ny:l Ui, is always positive.
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Generalized Polynomial Model

The generalized polynomial model, when operating under an assumption of material incompressibility,
begins from

N . .
w=Y ¢;(L—-1)(L-1), (20)
i+j=1

_ - 2 2 2 - =2 =2 =2
where /; are the deviatoric strain invariants defined by I} = A, +A4,+Azand, =4, +A4, +A; . Fol-
lowing the same procedure as before with respect to the principal stretches yields

N . .
w= Y c;Af+227 1) (A2 424 - 1), @1

i+j=1
From which the uniaxial stress can be obtained as

N . .
o)=Y Cyli(A2+24 =) (@A -22,2) (A2 24— 1)’

itj=1

(A2 -0 ) (oA - 1) @

Only the modulus term, C;; is needed for the polynomial model. Generally values of N > 2 are not used
due to the number of required calibration parameters. The initial modulus, L, is obtained by 2 (Cjo + Co1 ).
Similar to the Ogden model, the polynomial model is subject to the constraint, Zﬁ j=1Cij >0, to ensure the
modulus is always positive.

Special Cases

From the Ogden model and generalized polynomial model, a few useful special cases of hyperelastic
models can be derived.

Reduced Polynomial Model — The first special case is the reduced polynomial model, which is the same
as the polynomial model with j = 0. The reduced polynomial models is given by

N
W:

Co(AZ+241 1), (23)
i=1

with uniaxial stress obtained as

N .
o (M) =Y Co [i(AF+227 = 1) (2 —2472)|. (24)
i=1

Yeoh Model — A further reduction of the reduced polynomial model is the Yeoh model [46]. The Yeoh
model simply restricts the reduced polynomial model to have i = 1,2, 3; which results in

W =Cio (A2 424" —1) +Cop (A2 424, = 1)2 4Gy (A7 +24, 1 = 1), (25)
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with uniaxial stress obtained as

6 (M) = (24 —2A72) [Cio+2Ca0 (A +247" —1) +3Ca0 (AT 4+247 1)) (20

Neo-Hookean Model — In the next instance, the neo-Hookean model can be derived through a special
case of either the Ogden model or the polynomial model. Using i = 1 in both models and letting o = 2 or
Jj = 01in the Ogden or polynomial models, respectively, the neo-Hookean model can be obtained as

W =Cio(Af +22, " 1), 27)

with uniaxial stress given by

(o) (l]) =Clo (211 — 21172) . (28)

Mooney-Rivlin Model — A final model, the Mooney-Rivlin model, is derived in a similar fashion to
the neo-Hookean model. From the Ogden model, the combination of ¢&; =2 and a; = —2 can be used;
from the polynomial model, the combination of i, j = 1,0 and i, j = 0,1 can be used. In either instance, the
Mooney-Rivlin model can be obtained as

W =Cio (Af +247 " = 1) +Cor (A7 2424 — 1). (29)
From which the uniaxial stress can be obtained as

o (A1) =Cio (241 =224, ) +Cor (2-22,77). (30)

Anisotropic Hyperelastic

Materials that are tube-like in nature, such as fibers or fiber-reinforced structures, are often modeled with
cylindrical geometry and anisotropic properties. For this study, the walls of the bridging veins within the
brain are treated as a fibrous material and, thus, described with an anisotropic hyperelastic model. Specif-
ically, the walls of the bridging veins are modeled using a constitutive form developed for arterial wall
mechanics [26, 47], sometimes referred to as the Holzapfel-Gasser-Ogden model. The corresponding strain
energy density function for this constitutive model form is given in Eq. (31)

_ k _ _
W= (0-3)+ % {exp [l (<11 + (1 =301 — 1) -1} 31)

where c, k1, and k, are material-specific stiffness, stress, and dimensionless parameters, respectively. As a
general note, the first term in Eq. (31) acts as an isotropic matrix-type contribution, while the second term
represents the anisotropic fiber-type term. The parameter k controls the degree of anisotropy by character-
izing the dispersion of the fibers, and /4 is another deviatoric strain invariant. As defined in [26], the k term
ranges from O (anisotropic) to 1/3 (isotropic). More clarification on this parameter may be found in [26];
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specifically, an interested reader is directed to Section 4.1 in [26]. As mentioned previously, it is convenient
to consider the orientation of fibrous materials in cylindrical coordinates (r, 6, z); within this coordinate
system, the invariants I; and /4 may be defined as

= A2+ A3+ (MAe) 2 (32a)
Iy = AZsin* y+ A§ cos® y (32b)

where 7y defines the angle between the circumference of the vein wall and the mean orientation of the fiber
families comprising the vein walls. The derivation of the uniaxial stress for this model is omitted here
because of its complexity; more information about this constitutive model may be found in [26].

2.1.3  Hyper-viscoelastic

The final model derivation presented in this study is for materials exhibiting both linear rate dependence
and large strain elasticity. For these materials, a hyper-viscoelastic material model is derived from the
Ogden model with Prony series viscoelasticity. (The process for incorporating any of the previously shown
hyperelastic models with Prony series viscoelasticity is the same as for incorporating Ogden hyperelasticity
and, therefore, is omitted for brevity.) Beginning with the strain energy density of Eq. (18), the Boltzmann
superposition principle is applied to obtain a time integral as

W = / [ o Hlt= ) T(Af‘f+2)tl‘“"/2—3)]dr. (33)

Note that for the polynomial model, or any model derived from the polynomial model, C;; would become
Cij(t — 7). The Prony series may then be incorporated to obtain

t N 2 M d o
W= S 1Y g (1= 0/m) | £ (a0 /2 _
_/O {iz_l L [1 j—lgj(l (=7 r)] - (,11 +2A, 3)}dr. (34)

As before the uniaxial stress is given by o = dl , thus

_/ { laz 1; ll_jigj (l_e—(t—r)/rj)] da [dl (la’+27L @/2 )}}dr, (35)

which may be further simplified to
_ 2 YN (0=1) _, (~o4/2-1)
o= [{E2u]-Eu ()| (e -a ) o e

The formulation for nonlinear viscoelastic constitutive models provided in [44] suggests deriving the

stress according to
! aw
o (1) :/_oog(t—s) <8M>ds (37)
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It can be easily shown that substituting the Prony series for g(r —s) and using the Ogden model for strain
energy density (thus inserting Eq. (19) for aXV) Eq. (37) becomes

o(t) = /t {[ ij‘, ( ”“f)] % [iza‘?(Al(“"‘”—kf‘a"/z‘”)]}ds, (38)

i=1

which may be easily re-arranged to match Eq. (36). The only other consideration that must be taken into
account is how Egs. (36) and (38) treat the initial modulus constant, gg. Equation (36) is already normalized
by go such that

Mi = [igo (39a)
g =3 (39b)
80

which then allows for the computation of the initial shear modulus as

Mz
Mz

W=

ﬁ&—@Zm— (40)
1 i i=1

With this understanding, it may be shown that Eqgs. (36) and (38) are prefectly equivalent.

If it may be further assumed that the strain rate is constant, and, thus, the relationship between stretch A,
and stretch rate A is linear, then the relation A; = 1 + A7 may be substituted into Eq. (36). The stress may
again be simplified to

Lot

i=1
[(ai— 1)(1+7'Lr)<°‘f—2)+(

% n 1) (1 +Z‘c)(_°"’/2_2)} }dr. 41)

This stress derivation has the same parameters and constraints as both the viscoelastic model and Ogden
hyperelastic model previously presented.

2.2 Equations of State

For fluids or fluid-like materials, equations of state were used to model the volumetric response of the
material.

2.2.1 Ideal Gas
The familiar ideal gas equation of state is given by

P=pR(T —T%) — pa, (42)

where P is pressure, R is the specific gas constant, T is the temperature and T2 is absolute zero on the
temperature scale, p is the density, and p, is the ambient pressure.
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2.2.2 Mie-Griineisen

The Mie-Griineisen equation of state is commonly employed for describing underwater shock and is
given by

P=Tp(En—En)+pu, (43)

where E, and Ey represent the internal and Hugoniot energy per unit mass, py is the Hugoniot pressure,
and I' is the Griineisen ratio, which is defined as

Po
r=r,2, (44)
“p

where I’y is a material constant and py is the reference density. The Hugoniot pressure can be related to its
energy term by

B Z:uU

— 45
200 (45)

H

where 1) represents the nominal volumetric compressive strain, expressed as 1 = 1 — py/p. Substituting the
relations in Egs. (44) and (45) into Eq. (43) yields

o
P=py (1 — 2") +TopoEm. (46)
Assuming a linear relationship exists between shock velocity Us and particle velocity U, those velocities
can be related by the expression

Us = co + sUp, @7

where ¢ is the intercept and s is the slope of the Us—U,, curve. More significantly, though, ¢y represents the
bulk speed of sound, i.e., the shock velocity at an infinitesimally small particle velocity, which is defined by

|k,
_ |20 48
(&0) 00 ( )

Values for s may be found in tables of past experiments or by performing a linear regression on shock and
particle velocity data. When the shock and particle velocities share a linear relationship, such as the one
described by Eq. (47), the Hugoniot pressure may be expressed as

2
C,
pu = U”fgg)z. (49)

It is important to note that the Us—U,, relationship is sometimes expressed as a cubic polynomial, but this
study only considers the linear relationship. Inserting the Hugoniot pressure from Eq. (49) into Eq. (46)
yields

~pocgn _Ton
P(En) = (i —ST])2 <1 > ) +TopoEm (50)
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which is commonly referred to as the “Us—U,” equation of state. Also, itis important to note that the quantity

poc(z) is equivalent to the bulk modulus at small strains (see Eq. (48)).

2.3 Model Parameter Estimation

The parameter values for the various material models were estimated through a few different means. For
the fluid or fluid-like biomaterials best modeled using equations of state, the appropriate parameter values
were found using standard values for the fluid in question, e.g., air, or values reported in literature, e.g., CSF.
For the elastic-type materials, the model parameter values were estimated using optimization.

2.3.1 Optimization Scheme

For the model parameters estimated via optimization, the chosen optimization algorithm was the “global
search,” which is an effective algorithm for finding the global minimum in the presence of several local
minima. Specifically, this study used the GlobalSearch function from MATLAB’s Global Optimization
Toolbox [48]. This function uses a large set of trial points to fully explore the parameter space and then
employs gradient-based optimization algorithms, e.g., steepest descent, that use the different trial points
as starting points. From these trial points, the global search algorithm seeks to identify several basins
of attraction, where a basin of attraction represents the set of initial values for the parameter vector that
converge to the same local minimum. By employing many trial points and attempting to identify several
basins of attraction, the global search method efficiently seeks out the global minimum. It should be noted
the general approach for material parameter estimation lends heavily from the methods described in [49].

2.3.2 Cost Function

The cost or objective function O for the optimization was based on minimizing the residual between the
data and the model predictions, as shown by Eq. (51)

0= |Y [6(&)—o(e))? (51)

where 6(&) and o(g) are the model-predicted and experimental stress values, respectively, at the N,
discretely measured strains &. It is often convenient to normalize the cost function in order to keep its
evaluation in a range spanning zero to unity (although values larger than unity are possible); thus Eq. (52)
was developed by normalizing Eq. (51) by the measured stress.

o-—9 (52)

Y o2(&)

k

In some cases, more than one stress-strain data set was available. In these cases, Eq. (52) was evaluated
for each data set and then the cost function became the summation across all evaluations of Eq. (52). This is
shown for an arbitrary material with N, data sets in Eq. (53).

0=01+0,+---+0y,= ) Oy (53)
m=1
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One potential issue with Eq. (53) is that assumes all data sets are of equal value and, thus, deserving of equal
weight. This assumption may be modified through the use of a weight vector w that contains individual
weights w; for each of the N; data sets, as shown in Eq. (54). Constructing the cost function in this manner
allows a user maximum control in steering the optimization process.

O=w101+w02+---+wnN,On, = Z WO (54)
m=1

Gathering Experimental Data

The experimental data needed for calibrating the material models were collected from previously pub-
lished studies in the literature. Specifically, data from figures in those studies were carefully extracted via
computer vision techniques and graphical methods. The extracted data was conditioned and regularized, if
necessary, before being treated as the experimental data in the optimization scheme, i.e., the experimental
stress in Eq. (51). The inherent variability among published studies meant that some data sets were origi-
nally presented as a discrete set in their respective figures whereas others were continuous plots; however,
both of these data sets became discrete by virtue of the data harvesting methodology employed herein. In
order to compensate for this effect, the optimization operated on a data set of 20 equally-spaced interpolated
stress-strain points regardless of the size or format of the original extracted data vector. However, for trans-
parency with regard to the originally extracted data, the figures in this study that display the results of the
optimization show the discrete extracted data points; these are treated as the “experimental data” in those
figures.

2.3.3 Constraints

The model predictions for 6 (&) were based on the different models for the various materials. Equations
(11), (19), and (41) were used for the viscoelastic, hyperelastic, and hyper-viscoelastic materials, respec-
tively. Each equation has its own set of parameters and those parameters were assigned various constraints,
making the optimization problem a constrained optimization. The specific constraints are discussed with
their material type below.

Hyperelastic

The hyperelastic materials were considered the most straightforward case for parameter estimation be-
cause, unlike models with viscoelastic terms, the model equation for the hyperelastic materials did not
involve numerical integration. The global search algorithm was used to find the optimal parameters for
Eq. (19) with the added constraint that parameters y; must follow ):ﬁvzl W; > 0 (similarly, Zﬁr i=1Gij > 0).
Another important constraint was placed on the model itself to ensure that the stress and strain followed
Drucker’s first stability criterion [50] given by

do:de>0 (55)

where do is the stress increment tensor and d€ is the strain increment tensor.
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Viscoelastic

In terms of constraints for the viscoelastic materials, there were several important considerations. Each
shear (relaxation) modulus ratio g; had to fall within the interval (0,1) and obey the inequality 1 — Z/}’Izl gji=>
0. Additionally, the time constants were constrained to always be positive, i.e., T; > 0. Another important
consideration was that the computation of the stress for the viscoelastic model involves numerical integration
(Eq. (11)), which meant that the integration time step A¢ had to be carefully chosen. This issue of time step
size mostly pertained to the data from tests with slower strain rates, i.e., £ < 1/s.

For instance, the experimental data for cortical bone, which is presented in Section 3.2.2, achieved
roughly the same maximum strain at six different strain rates ranging from 1 x 1073/s to 1.5 x 103/s. That
maximum strain, which was around 0.72 percent, would be achieved in approximately 4.8 x 10~ s for the
highest strain rate but would require 7.2 s for the lowest. Thus, discretizing these two time domains with
the same number of increments would yield two vastly different time step sizes. Given that the time step
sizes for the highest strain rate would be extremely small by default, only a few increments are needed;
however, using an equivalent number of increments for the lowest strain rate would result in a time step
size of insufficient resolution. Ultimately, an appropriate time step size may be chosen by studying how
the model predictions converge with decreasing time step size, as demonstrated by Fig. 2a. For the model
of the cortical bone the relative deviation in model predictions across the time step sizes was only around
1 percent, but Fig. 2b shows that for a model of grey matter with a similarly slow strain rate (1 x 107%/s)
the relative deviation was much more significant, at over 700 percent. (Note that the time steps in Fig. 2b
are smaller than those in Fig. 2a.) By studying the convergence behavior of the different constitutive model
forms, appropriate time step sizes were chosen for each material exhibiting viscoelastic properties to ensure
sufficient accuracy in the model predictions.

95 207
— A t=0.076s —At= 0.024s
— A t=0.038s — A t=0.0095s
945+ At1=0.019s 15 A t=0.0047s /
< — At=0.015s T LT At=0.0024s
o F——At=0.013s / o A £=0.00095s
= o4 A t=0.0095s 100 A t=0.00047s
0 A t=0.0076s 0
o o
& 7
93.5 5t
93 ' ' ' ! 0 . . . . |
0.72 0.721 0.722 0.723 0.724 40 41 42 43 44 45
Strain (%) Strain (%)

. . _3
(a) Model for cortical bone at strain rate of 1 x 10™°/s (b) Model for grey matter at strain rate of 1 x 10~2/s

Fig. 2: Demonstration of model convergence with decreasing step size for different material models. (Model
predictions shown at or approaching maximum strain)
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Hyper-viscoelastic

The hyper-viscoelastic materials were estimated in the same manner as the hyperelastic and viscoelastic
materials. The same constraints were placed on the viscoelastic parameters of the Prony series and on the
U; terms for the hyperelastic component of the model. Due to the hyperelasticy, compliance with Drucker’s
first stability criterion was also included as a constraint for these models. Several of the materials possessed
data sets at multiple strain rates, meaning that weighting vectors were also necessary. In addition to these
constraints, the hyper-viscoelastic materials also included another consideration for parameter uniqueness.

One of the more persistent challenges in parameter estimation and optimization involves uniqueness.
Specifically, the ability to identify a unique set of optimal parameters. While this challenge was encountered
for both the hyperelastic and viscoelastic materials, it was found that the hyper-viscoelastic materials posed
the most significant issues related to uniqueness. For instance, performing optimization on the hyperelastic
or viscoelastic materials would result in different optimal parameters for each trial, but the normalized
prediction error was similar each time and the variation in the optimal parameters was limited. In contrast,
the normalized error for the hyper-viscoelastic materials could differ by an order of magnitude between two
trials with accompanying optimal parameter vectors that are vastly different.

In order to better illustrate this phenomenon, a sample material was created using arbitrary values for
the hyperelastic and viscoelastic parameters, which are given in Table 2. Using these material parameters,
stress-strain curves were created for six strain rates spanning from 0.01/s to 1000/s by decade, i.e., power of
10; the applied strains were compressive. The stress-strain information was then used as the experimental
data for the global search optimization; this data set is referred to as “pseudo-data” for the purposes of this
study. The advantage of using known material parameters and pseudo-data is obvious in that, since the
ground truth values are known, the results of the optimization may be much more precisely assessed.

Table 2: Material Parameters for Sample Hyper-Viscoelastic Material

Ogden terms Prony series

Component Wi o gj T; 0
i=1 1.00x10° 3.00 | j=1 0.08 1.00 x 10!

True Value 4 ] 3
i=2 —5.00x10* 1.00| j=2 0.25 1.00 x 10~
i=1 —146x10° 050 | j=1 0.22 8.22 x 1072

Trial 1 5 J 9 0.6064
i=2 275x10° 3.05| j=2 0.66 229 %10~
=1 7.14%x10° 370 | j=1 636x10~% 8.10x 1073

Trial 2 ' ) / 0.1142
i=2 863x10° 376 | j=2 0.99 1.01 x 1077

The results of two different trials of global search optimization are presented in Table 2 with the
randomly-generated initial parameter vector being the only difference between the two trials. The esti-
mates for the Ogden terms for Trial 1 are reasonable reflections of their true values, especially for the a
terms (although their i indices are swapped). In contrast, the Ogden terms from Trial 2 are universally too
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large, with the u terms lacking a negative value and both o values being greater than their true values.
Neither trial experienced any notable success in estimating the Prony terms. Paradoxically, however, Trial 2
boasts a normalized prediction error over five times smaller than that for Trial 1.

While it is acknowledged that this study omits necessary discussions on parameter identifiability and
sensitivity, the broader point about challenges in unique parameter identification still holds. Despite the
apparent evidence to the contrary, Trial 2 provided the closest fit to the original data set even though none
of its individual parameter estimates were closest to their true values. This example is meant to serve as an
illustration of these parameter estimation challenges and an aid in interpreting the results presented for the
hyper-viscoelastic biomaterials included in the model.

3. RESULTS AND DISCUSSION

The identification of the model parameters for the various components of the finite element (FE) model
are detailed below. Many of the soft biological materials were treated as nearly incompressible and, there-
fore, were given a Poisson’s ratio of v =0.499999. In addition, these soft biomaterials were also given a bulk
modulus of 2.19 GPa [8] unless otherwise noted. Tabulated summaries of the relevant material properties
and estimated parameter values are provided in Appendix A.

3.1 Materials Modeled via Equations of State

A brief summary of the fluid-like materials described by an equation of state and included in the model
is given below.

3.1.1 Sinuses and Airway

The sinuses in the head model were treated as air and, therefore, were modeled using the ideal gas
equation of state. It is assumed that the ambient pressure p, is 1 atm, which is equivalent to 101.325 kPa.
The density of air at 1 atm and 35 °C, which is close to body temperature of 37 °C, is 1.1455 kg/m>. The
specific gas constant R for air is 287.058 J/(kg-°K); since a Kelvin temperature scale is being employed, 7%
may simply be taken as 0. Lastly, the air must be given a viscosity to satisfy ABAQUS’s requirement for
shear properties — at 37 °C the viscosity of air is 19.2 x 107% Pa-s. These values are listed in Table Al
without a specific source because the properties of air are widely agreed upon.

The airway was modeled with the ideal gas equation of state using the same parameters as for the air-
filled sinuses.

3.1.2  Cerebrospinal Fluid (CSF), Ventricles, and Venous Sinuses and Bridging Veins

The ventricles of the brain are cavities filled with cerebrospinal fluid (CSF). This fluid component of the
brain was modeled using the Us—U,, equation of state. The CSF was treated as an incompressible fluid whose
density was provided by [23] (see Table A1). For the purposes of FE modeling, CSF is often given the same
bulk properties as water (Ko = 2.19 GPa) [9, 51]. The venous sinuses and bridging veins primarily concern
the fluid inside, namely blood. For the purposes of this study, the blood was modeled the same as CSF and
water; given the minor role of these components in the greater model, this assumption had little impact.
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The determination of the parameters co, s, and I'y necessary for the Us—U,, equation of state, commonly
referred to as the shock Hugoniot parameters, is more difficult as the field of biomechanics currently lacks
specific experimental studies on shock Hugoniot parameters for CSF. However, given the congruity in ma-
terial properties between water and CSF, this dearth of reliable data may be compensated for by using shock
Hugoniot data for water. While a variety of shock Hugoniot parameters exist for water, as may be seen
in [52], there tends to be agreement on the bulk speed of sound for water as ¢y = 1480 m/s [22, 52-54].
Additionally, the parameter s is generally agreed to fall within the interval 1.75-1.79 [22, 52, 54]; this study
uses s = 1.79. However, there is less agreement for the Griineisen parameter I'g. Both [22] and [54] use
'y = 1.65, but [52] reports using 'y = 0.4934; this study adopts [y = 1.65.

In addition to the shock Hugoniot parameters, the CSF was also given a viscosity, where the viscosity
was based on the Newtonian model shown in Eq. (56)

T=_y (56)

where 7 is the equivalent shear stress, ¢ is the viscosity, and ¥ is the engineering shear strain rate. At the
average human body temperature (37 °C) the viscosity of water is 0.6913 mPa-s [55]. Despite its many
similarities to water, the presence of CSF could potentially impact its viscosity. However, experiments
performed by [56] revealed that CSF has a viscosity of 0.7-1.0 mPa-s at 37 °C, very nearly the same as
water. Therefore, this study adopts a viscosity of 0.7 mPa-s for CSF.

Since these materials are so close to incompressible, an equation of state may not be necessary for
modeling the volumetric component. An equivalent incompressible model can be used to better predict the
shear behavior. Thus, the CSF can also be modeled as a hyperelastic material governed by a neo-Hookean
model, as in Eq.(27). Using the shear modulus of 22.53 kPa provided in [8], Cjo becomes 11.27 kPa.
Additionally, utilizing the generic bulk modulus for soft materials yields D; =9.13 x 10~! GPa~'.

3.1.3  Vitreous — Eyes

When modeling the eyes, the majority of the eye structure was treated as the fluid-like vitreous humour.
This was another component modeled using the Us—U,, equation of state. The necessary material properties
for the eyes, given in Table Al, are provided by [24]. While [24] does not provide the shock Hugoniot
data, the bulk speed of sound may be computed using the bulk modulus for vitreous (2000 MPa) and its
density, yielding ¢y = 1450 m/s. Given that the bulk properties of the vitreous are similar to those of water,
it is assumed that the shock Hugoniot parameters s and I'y for water may also be used for the vitreous. This
is an admittedly bold assumption, but shock Hugoniot data is not readily available for the vast majority of
biological materials.

Like the CSF, the vitreous may also be modeled as a neo-Hookean material. The value for D; may be
quickly computed as 1 GPa~!. Additionally, the initial shear modulus for the vitreous is given as 7.6 x 107°
MPa in [57], which then provides Cjg = 3.8 x 10~° MPa.

As an important note, [8] modeled the eyes as a single material quantity in their model of the human
head and used different material properties. The density for the eyes in their model is listed as 1040 kg/m?
with a bulk modulus of 2.19 GPa, both of which are greater than the values given in [24, 57] by around 10
percent. The much more significant difference is in the shear modulus, where [8] claims a shear modulus
of 22.53 kPa for eyes, as compared to the initial shear modulus of 7.6 x 10~3 kPa given by [57]. These two
values differ by four orders-of-magnitude, indicating that material models based on one or the other likely
exhibit significantly different behavior.
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3.2 Materials with Parameters Estimated through Optimization
3.2.1 Hyperelastic

In general, the hyperelastic materials were modeled with a two-term Ogden series; however, there were
two notable exceptions: the walls of the bridging veins, which were treated as anisotropic hyperelastic,
and the intervertebral discs, which were modeled using a Mooney-Rivlin formulation. Additionally, the
assumed thickness for the various model components treated as membranes (bridging vein walls, pia mater,
dura mater, and sclera) are also reported.

Bridging Vein Walls

The walls of the bridging veins were modeled as an anisotropic hyperelastic material. As detailed in
Section 2.1.2, the Holzapfel-Gasser-Ogden model was used to characterize the walls of the bridging veins.
Due to the lack of experimental data, the model parameter values were taken directly from [26]; these values
are listed in Table A2. Additionally, the thickness of the bridging vein walls was specified as 120 um based
on the work in [25].

Pia Mater and Dura Mater

The pia mater was modeled using experimental data from [28], which lists the density of the pia mater
as 1130 kg/m>. The thickness of the pia was treated as 20 m based on measurements of the thickness of the
pia-arachnoid complex [27]. The experimental data is shown by the solid line in Fig. 3a; however, it should
be noted that this tensile stress-strain data is based on experiments originally performed by [58]. As a two-
term Ogden model for hyperelasticity, a total of four unknown parameters were found using constrained
nonlinear optimization, with the main constraints being the familiar stipulation for t; and Drucker’s first
stability criterion. The final parameters for the hyperelastic model and the cost function value are given in
Table A2.

The model-predicted stress is shown by the dashed lines in Fig. 3a. This figure clearly shows that the
model closely matches the full range of observed experimental data. The final prediction error (cost function
value) is provided in Table 3.

The dura mater was also modeled as a hyperelastic material. As with the pia mater, the density of the
dura mater and its relevant mechanical properties were given in [28]. The thickness of the dura mater model
was 550 um based on the results presented in [29]. The dura was modeled using experimental data from the
same study ([28]), which is shown by the solid curve in Fig. 3b. Adopting the same approach for finding the
optimal parameters as for the pia mater yielded the parameter values shown in Table A2. Additionally, the
stress values generated by the models are plotted against the experimental data in Fig. 3b. This figure show
good agreement between the model and the experimental data for all strains below 18 percent, but the model
begins to deviate for larger strains. This leads to a noticeable increase in the prediction error in Table 3.

Falx and Tentorium

The falx and the tentorium were modeled using the same material properties; the density given in Ta-
ble A2 was provided by [30]. The stress-strain data used for finding the Ogden model parameters may also
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Fig. 3: Stress-strain data for the pia mater and dura mater (human subject); experimental data originally
presented in [28]

be found in [30], but the data originally appeared in [59]. This experimental data is plotted in Fig. 4. Fol-
lowing the familiar constrained nonlinear optimization resulted in the parameter values shown in Table A2.
The stress values generated by the model are plotted against the corresponding strains in Fig. 4, demonstrat-
ing reasonable agreement between the model and data. The prediction error is comparable to that for the
dura mater.

Sclera

Since little information exists about the material properties of the sclera, it was given the same density as
the pia mater, which ensheathes the optic nerve; the same density for pia mater is provided in both [28] and
[30]. Additionally, due to a lack of stress-strain data for the sclera, results of experimental stress-strain tests
on the cornea [31] were used to calibrate the parameters of its hyperelastic model. A mean corneal thickness
of 850 um was reported in [31], and this value was adopted for the sclera. While it is acknowledged that
the cornea is separate in terms of form and function, it is continuous with the sclera and both are part of the
connective tissue encompassing the globe of the eye. Thus, given their similarities and the dearth of reliable
stress-strain data for the sclera, experimental data for the cornea may serve as an acceptable substitute.

The experimental data used to calibrate the sclera model, which comes from a study of the cornea, is plot-
ted in Fig. 5. The parameters were found using the familiar optimization scheme with the same constraints,
and the final parameter values are provided in Table A2. The final cost function value is shown in Table 3
to be nearly 1 percent, and the model-generated stress-strain curve in Fig. 5 is nearly indistinguishable from
the original experimental data.

Intervertebral Discs

The intervertebral discs are composed of a fluidic nucleus and fibrous annulus. For the purposes of this
study, the discs were treated as a fully fibrous annulus and were modeled as a hyperelastic material using the
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Fig. 4: Comparison of stress-strain curves for the falx and tentorium (treated as one material) based on a
hyperelastic model and experimental data from [59]

Mooney-Rivlin formulation. This particular model for hyperelasticity was chosen for the discs because it has
already been used to model intervertebral discs [32], and the model parameters, in addition to the mechanical
and material properties for the discs, are provided in [32]. Further, no stress-strain data is available for the
interveterbral discs, so a new set of parameters could not be obtained. The necessary material properties and
parameters for the intervertebral discs are given in Table A2. While no bulk modulus is provided, it may be
computed using Eq. (16) and the values for v, Cyg, and Cy; reported in [32]; solving for the bulk modulus
yields 4.35 MPa.

Costal Cartilage

The costal cartilage (bars of cartilage that extend the ribs) was considered a hyperelastic material. The
mechanical properties of cartilage are explored in [33], but the cartilage considered for that study is au-
ricular cartilage (from the ear) as opposed to hyaline cartilage (from the ribs). Nonetheless, [33] provides
information about the density human auricular cartilage. Based on the numerous samples collected by [33],
the average wet weight for the circular punch biopsies was 35 mg, which, based on the size of the biopsies,
leads to an estimated density of 1240 kg/m3. The study in [33] also assumes that the auricular cartilage is
nearly incompressible; this assumption is adopted for the costal cartilage.

The experimental data used for calibrating the costal cartilage model comes the study in [33] for auricu-
lar cartilage, which serves as a useful substitute given the scarcity of biomechanical data for costal cartilage.
This experimental data is shown in Fig. 6. The final parameter values were found using the familiar nonlin-
ear optimization scheme and constraints, yielding the values shown in Table A2. When plugged back into
the model, these parameters produced the “model” curve in Fig. 6 that closely follows the experimental data.
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Fig. 5: Comparison of stress-strain relationship for experimental data from the cornea [31] and hyperelastic
model of the sclera

Table 3: Final Cost Function Values for the Hypere-
lastic Materials

Component 0

Pia Mater 0.0892
Dura Mater 0.2751
Falx/Tentorium 0.2622
Sclera 0.0126
Costal Cartilage 0.1107

3.2.2 Viscoelastic Materials
Bone

Skull — The skull is made up of two types of bone material, cortical bone and cancellous bone (also
known as spongy or trabecular bone). Each of these bone materials is modeled as transversely isotropic
viscoelastic, but the material properties are different (Table A3). For the cortical bone of the skull, the density
and modulus information was taken from a study on the parietal bone in [34]. The density shown in Table A3
was taken as the mean of the density measurements presented in [34]; however, the modulus information
required some additional manipulation of the data from [34]. When defining the transversely isotropic
properties of this material, the plane of isotropy was defined along the first and second principal directions,
making the third principal direction normal to the plane of isotropy. The modulus values related to the first
and second principal directions, therefore, needed to be equal. This was accomplished by averaging the
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Fig. 6: Comparison of stress-strain relationship in compression for experimental data from auricular carti-
lage [33] and hyperelastic model of the costal cartilage

corresponding modulus values from [34]. The moduli for the third principal direction were taken directly.
(As an important note, the weakest side in [34] is the first; this was changed to the third for the purposes of
this study by making the appropriate changes to the modulus indices).

The Poisson’s ratio values were found through a combination of analytical formulas and data from [34].
The ratio v, was computed from the basic relation between the shear and elastic moduli shown in Eq. (57)

E
G= 2(1+v) ©7

and using E» and Gy2; solving for v yielded vi; = 0.30. The other Poisson’s ratios were found by averaging
V13, V23 and V31, V3p, producing 0.3975 and 0.32, respectively. According to transversely isotropic theory, the
Poisson’s ratios are related by vsp/E3 = v»3/E>; however, given that these values come from experimental
data, the ratios are only approximately the same.

The cancellous bone was more difficult to model because there is less available experimental data re-
garding stress and strain. However, in-depth studies on the density of human trabecular bone have been
conducted in [35] and [60]. Ref.35 performed a series of studies on the cancellous bone in lumbar ver-
tebrae ultimately finding a bone density range of 0.057-0.142 g/cm? (57-142 kg/m?). Ref. 60 considered
cancellous bone samples from the vertebrae, tibia, and femur, reporting an apparent mean density of 0.18
g/em® (180 kg/m?) for the vertebral samples. While these values do not perfectly agree (and while it is
acknowledged that the cancellous bone in the vertebrae is likely much different than that in the diploé€ of the
skull), they offer a reasonable comparison. Ultimately a density of 100 kg/m> was chosen.

Several values for the elastic modulus of trabecular bone are presented in [60] and [61], but there is
little to no agreement among the values as they span nearly a full order of magnitude. Ref. 36 offers plots
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of the compressive behavior of both cortical and cancellous bone. Manual interpretation of this stress-strain
data provides estimates of the elastic modulus as 16.77 GPa and 533 MPa for cortical and cancellous bone,
respectively. Since this estimate of the elastic modulus of cortical bone closely resembles the values shown
in Table A3, this data set was used to estimate the elastic moduli of cancellous bone. Specifically, the ratio
between the two moduli Ecaneellous /peortical — () 0318 was used to modify the elastic and shear modulus
values for cortical bone listed in Table A3. The same Poisson’s ratios were used because they are unaffected
by a linear scaling of the modulus values. Additionally, as with the cortical bone, there was a severe lack of
stress-strain data for finding the necessary viscoelastic parameters for the cancellous skull bone. Therefore,
the stress-strain data from the cortical bone given in [62] was scaled by the same ratio and used for parameter
estimation.

Mandible — The mandible bone was modeled separately from the skull using data from [34] and [37].
The mandible was modeled as a transversely isotropic viscoelastic material. The density of the mandible
was taken as the approximate mean across the many samples recorded in [37]. Additionally, the elastic and
shear moduli values were taken from [37]. As with the cortical bone in the skull, the plane of isotropy lies
along the first and second principal directions, making the third principal direction normal to the plane of
isotropy. Therefore, as before, the values related to the first and second principal directions were made equal
by averaging the corresponding values from [37]. (As an important note, the weakest side in [37] is the
first, but this is changed to the third for the purposes of this study).

The Poisson’s ratio v, for the mandible was, again, found by taking Eq. (57), using E> and Gy;, and
solving for v, which yielded v;» = 0.375. The other Poisson’s ratios were found by averaging v;3, Vo3 and
V31, V32, producing 0.39 and 0.245, respectively. It can be shown that these Poisson’s ratios generally obey
the relation: vsp/E3 = V23 /E;.

Vertebrae — The vertebrae consist of cancellous bone encased in cortical bone, with cancellous account-
ing for 81 percent of the volume (for men) [63]. The vertebrae in the model were created using the material
properties for cortical and cancellous vertebral bones in [32] and applying the rule of mixtures using the
appropriate volume fractions (note that these values are slightly different than those used for the cortical and
cancellous bone models). For instance, the density and elastic modulus were found through the following
computations

p = 19%(1830 kg/m?) +81%(170 kg/m?) = 485.4kg/m> (58a)
E = 19%(16,800 MPa) + 81%(100 MPa) = 3273MPa (58b)

Additionally, it was shown in [32] that the Poisson’s ratio for each component of the vertebral bones was
nearly v = 0.3; this value was then adopted for the vertebrae in the model.

Ribs — The density of the ribs was taken to be the same as the density of the cortical skull bone,
1841 kg/m>. The elastic modulus was estimated based on samples of porcine cortical bone (from the femur)
in [38].

Sternum — The sternum is mostly cancellous bone that is encompassed by a thin layer (or shell) of
cortical bone. Vertebral bones generally have the same structure, and both vertebrae and the sternum belong
to the axial skeleton [64]. Considering these similarities, the sternum was modeled using the material
parameters previously assigned to the vertebrae. Table A3 shows these shared properties.
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Modeling Bone — Unlike the hyperelastic materials, only one data set was available for calibrating the
viscoelastic models for all of the bone materials. The data for calibrating the models comes from [62],
a study focusing on the mechanical properties, e.g., stress-strain relationship, of femoral cortical bone;
there was no specific stress-strain data available for the skull, mandible, vertebrae, ribs, or sternum. The
experimental data is plotted in Fig. 7 exhibiting both its linear relationship between stress and strain and the
change in slope with strain rate. The experimental data covers six different strain rates spanning six decades
(from 1073 to 10%) but only a fairly small range of strains, as the maximum strain in the linear range was
around 0.7-0.8 percent for most strain rates [62].
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Fig. 7: Stress-strain data for femoral cortical bone at various strain rates; experimental data originally pre-
sented in [62]

The computational model has a total of six types of bone components: cortical skull bone, cancellous
skull bone, the mandible, ribs, vertebrae, and sternum. For the purposes of this study, the primary differences
between these bone types are their elastic and shear moduli; most of the bone materials share a Poisson’s
ratio of v = 0.30. Further Eq. (11) shows that the elastic modulus E shares a linear relationship with stress,
meaning that the available experimental data set could be linearly scaled to fit each bone material. This
was accomplished by normalizing the experimental data in Fig.7 such that the slope of the curve for the
highest strain rate (1500/s) was set to unity; this essentially normalized the experimental data set by the
elastic modulus for the highest strain rate curve. Then, the normalized experimental data could be scaled by
the elastic modulus of the material of interest, e.g., cortical skull bone or ribs, so that the 1500/s curve would
have the slope (and thus elastic modulus) of the desired material. The highest strain rate curve was chosen
for normalization/scaling as this was deemed the primary curve of interest. The slope (elastic modulus) of
the 1500/s strain rate stress-strain curve in Fig. 7 is approximately 39.5 GPa; the various elastic moduli used
for the different bone materials are listed in Table A3. It was further assumed that the available experimental
data shared a Poisson’s ratio of v = 0.30.
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Given that this technique merely represents a linear scaling, it would be expected for the optimization to
return essentially the same optimal parameters for the Prony series each time; any variation would likely be
due to the difference in the initial parameter vector. (A small investigation revealed this assumption to be
mostly true.) Therefore, it is far more efficient to fit a generic viscoelastic model to the experimental data
and then perform any scaling as post-processing. Two “generic” viscoelastic models, a two-term or six-term
Prony series, were fit to this data set using the nonlinear optimization scheme and constraints detailed in
Section 2.3.

Given that there were data sets from six separate strain rates, a weighting vector w=[0.5,0.5, 0.5, 1, 2, 3]
was used; the weights were chosen this way to emphasize the higher strain rates, as those are more com-
monly associated with blast effects. The final parameter values for the “generic” models are given in Table
4. It is important to note that the order of the parameters shown in Table 4 is arbitrary; each g; and 7; must
remain paired together, but their order may be shuffled without changing the stress computation. (Typically,
the Prony series terms are presented in order of ascending 7, but that convention does not impact the stress
computation, either). The normalized total costs (O) are also given in Table 4, and these show that increasing
the number of terms in the Prony series from two to six did not significantly reduce the error. Additionally,
the parameter values for the six-term model show a great deal of redundancy in 7; and near-negligible values
for several g}, indicating that six terms is likely unnecessary. Therefore, the two-term model is used for the
ensuing analysis as it reduced complexity did not significantly hinder its accuracy.

Table 4: Parameter Values for the Viscoelatic Model of Cortical

Bone

Prony Series Model gj T; [
j=1 04838 1.32x107

2-term model =2 01336 6.00x 102 0.4124
=1 0.018 8.73x107!
=2 0.0175 8.73x107!
j=3 0.0180 8.78x 107!

6-term model =4 00176 8.75x 10! 0.3858
j=5 0.0792 1.56x 1072
j=6 04772 129x107

The modeling of the skull was divided into two parts, cortical bone and cancellous bone. The stress-strain
curves the cortical skull bone were generated using the two-term model and plotted against the appropriately
scaled experimental data in Fig. 8; for scaling, the cortical skull bone was given an elastic modulus of 16.65
GPa, which is also the slope of the 1500/s stress-strain curve. For the lower strain rates, shown in Fig. 8a,
the model-predicted curve had a fairly small but consistent deviation from the experimental data. The model
essentially matches the experimental curve for 0.001 s~! strain rate but is less exact for the other low strain
rates. Figure 8b demonstrated that the model-predicted curves generally followed the experimental results,
especially for the strain rate of 1 s~!.
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Modeling of the cancellous skull bone required a more drastic scaling of the data, as the elastic modulus
for the cancellous skull bone was roughly 3.18 percent of that for the cortical skull bone (530 MPa/16.65
GPa). The model-predicted stress values are plotted against the ratio-adjusted experimental results in Fig. 9.
As with the cortical bone plots, the slope of the 1500/s stres-strain curve is set to 530 MPa.

Figures 8 and 9 demonstrate that each stress-strain plot for a bone material is essentially the same save
the scaling of the stress. Thus, there is little need to plot the model comparisons for the bone materials as
the plots are the same each time, only scaled. For this reason, the comparison plots for the ribs, sternum,
and vertebrae are not included; the relevant material properties for these materials are given in Table A3
and the viscoelatic parameters, i.e., the Prony series terms, remain the same as for cortical and cancellous
skull bone. The one material exception is the mandible, which has a Poisson’s ratio of v = 0.375, which is
significantly different enough to require a slightly modified model.
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Fig. 8: Comparison of stress-strain curves produced from scaled experimental data of cortical bone [62]
(solid lines) and viscoelastic model of cortical skull bone (dashed lines)
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lines) and viscoelastic model of cancellous skull bone (dashed lines)
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The model parameters for the mandible are given in Table A3, but it may be easily seen that they are
identical to those for the generic model (albeit in a different order); similarly, the final normalized total
cost was the same. This can be easily understood by the fact that Eq. (11) demonstrates that the Poisson’s
ratio v does not factor into the uniaxial stress calculation for a linear viscoelastic model. Figure 10a shows
that the model-predicated stresses for the lower strain rates evince the same degree of accuracy as in the
cortical and cancellous skull bone plots; the same is also true for the plots of the higher strain rates. While
the optimization of parameter values for the mandible model may seem like a redundant and unnecessary
task, the optimization was nonetheless performed because the difference with respect to v would be cause
for determining different parameter values if a model that incorporated Poisson’s ratio were to be used.
Additionally, the results of an optimization trial over a scaled model revealed the relative insensitivity of the
parameter values, suggesting that a unique parameter value set exists for the two-term Prony model for bone
materials.
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Fig. 10: Comparison of stress-strain curves produced by scaled experimental data of cortical bone [62]
(solid lines) and viscoelastic model of mandible bone (dashed lines)

3.2.3 Hyper-viscoelastic
Cerebrum, Cerebellum, Brain Stem, Spinal Cord, and Optic Nerves

The cerebrum and cerebellum are both composed of grey matter and white matter, each of which must
be treated as a separate material. Both grey matter and white matter were considered to be hyper-viscoelastic
materials. The densities of grey and white matter, as reported in [8], are given in Table A4. In addition to
the cerebrum and cerebellum, the various parts of the brain stem, the spinal cord and the optic nerves were
all modeled as hyper-viscoelastic materials. Since the brain stem and spinal cord are primarily composed
of white matter, those model components adopted the parameters estimated for the white matter of the
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cerebrum and cerebellum. Based on the work by [65], the optic nerve may be assumed to behave similarly
to central nervous system tissue, e.g., white matter. Therefore, the optic nerve was also modeled using the
same constitutive equations and materials properties as for white matter.

The parameters for the hyper-viscoelastic models of the grey and white matter were found through
calibration using data from [66]. The experimental stress-strain data for porcine grey matter is shown in
Fig. 11, demonstrating how strain rate impacts the stress. (Note that the data in Fig. 11 is for compressive
stress-strain testing.) The strain rates vary by at least five orders of magnitude between Figs. 11a and 11b. In
turn, the observed stresses vary by two or three orders of magnitude; however, Fig. 11b shows that for very
high strain rates, the stress can increase by nearly an order of magnitude when tripling the strain rate. For the
slower strain rates in Fig. 11a, a ten-fold increase in strain rate only results in the three- or four-fold increase
in stress. Clearly, though, the effect of strain rate has an important influence on the model parameters.
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Fig. 11: Grey matter stress-strain data for various strain rates (porcine subject); experimental data originally
presented in [66]

Since curves for multiple strain rates are included in the calibration data, there was an additional consid-
eration of weighting the five data sets. Ultimately a weight vector w = [0.5,1,2,1,0] was chosen. Thus, the
data from the test with a strain rate of 1000/s was deemed most important, and the data from the test with a
strain of 3000/s was ignored during parameter estimation. The final parameters returned by the optimization
scheme for the hyper-viscoelastic model of grey matter are listed in Table A4. The optimal parameter reveal
that the Prony terms were rather insensitive to the data, as one term clearly became dominant. For the Ogden
terms, the hyperelastic behavior is dominated by a near-cubic term (0 = 2.74 =~ 3).

Figure 12 shows the stress-strain curves generated by the hyper-viscoelastic model of grey matter for the
various strain rates. For the lower strain rates in Fig. 12a the model-predicted stress generally followed the
experimental data up to the maximum strain around 45 percent for both sets of curves. The same observation
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could be made for some of the higher strain rates; however, the model-predicted stress for the 3000/s strain
rate appears to deviate from the experimental data quite rapidly for strains in excess of 15-20 percent.
Across all strain rates, Fig. 12 demonstrates that the model provides sound estimates for strain rates up to
2000/s for strains up to 45-50 percent. While the model does not perform as well for the strain rate of
3000/s, it is important to recall that this data set was given zero weight during optimization.
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Fig. 12: Comparison of experimental stress-strain data and hyper-viscoelastic model for grey matter for
various strain rates (procine subject); experimental data originally presented in [66]

The plots in Fig. 12 only show the model-predicted compressive stresses (which are treated as positive),
but Fig. 13 exhibits the model-predicted stresses from —30 percent to 30 percent strain to include both
compression and tension. (Please note that compressive stress and strain are treated as negative in Fig. 13.)
A variety of strain rates spanning three orders of magnitude are included in Fig. 13 to capture the full range
of stress-strain behaviors exhibited by the model. This figure demonstrates that the model produces a rather
severe increase in stress for very small strains for larger strain rates — evidence of this sharp rise may also
be observed in the 0.1/s curve in Fig. 12a. This sharp rise in stress may be due in part to the modeling
assumption of a constant strain rate when, in fact, critical studies of Hopkinson Bar tests have revealed that
this experimental technique, which was used to produce the results in [66], does not actually result in a
constant strain rate, especially for the lower strains at the initiation of the experiment [67].

White matter was modeled in the same manner as grey matter, using data sets from the same source
[66]. Figure 14 presents the experimental stress-strain data for porcine white matter. The data in these
figures was used to determine the optimal parameters for the hyper-viscoelastic model for the white matter.
The same optimization scheme was used with the same weighting vector applied to the experimental data.
Additionally, the same constraints were applied to the model parameters.
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Fig. 13: Model-predicted stress for grey matter over a strain range of [-30%,30%] for a variety of strain rates

The resulting model parameters produced by the optimization algorithm are given in Table A4. Both
the parameters for the Ogden and Prony terms are noticeably different from those for the model for grey
matter. Most notably, the shear modulus parameters differ by an order of magnitude and the Prony series
is not completely dominated by a single term for white matter. The values for the normalized cost function
are also shown in Table 5, and they present a stark contrast between the grey matter and white matter;
namely, the normalized prediction error, i.e., the final cost function evaluation, is much larger for grey
matter. However, this difference is most likely the result of the randomness associated with solving a high-
dimensional optimization problem.

While the global search algorithm seeks to find the global minimum among a large population of local
minima, there is no guarantee that the global minimum will be found (as was shown with the sample mate-
rial). Further, this method, despite its use of multiple trial points, retains at least some sensitivity to initial
conditions. Additionally, given that the optimization is based on minimization with respect to experimental
data, it is highly possible (if not likely) that a unique solution does not exist because the data does not strictly
conform to the model; also, different data sets were used for grey and white matter, and it is possible that
the data set for white matter better fits the assumed model. Therefore it is possible that additional attempts
with the global search could produce an optimal parameter set with a lower prediction error, but it is also
possible that another global search would find an optimal parameter set with higher prediction error.

The model predictions for the white matter are plotted against the experimental data in Fig. 15. The
improvement in normalized prediction error is reflected in Fig. 15a where both of the model predictions for
the low strain rates nearly match the experimental data. The curve for 0.01/s strain rate begins to show some
deviation around 50-60 percent strain, but this is still rather small. The model predictions for the 1000/s
strain rate nearly perfectly follow the experimental data in Fig. 15b, whereas the predictions for the higher
strain rates of 2000/s and 3000/s are not quite as close but still comparable for 2000/s. In comparison to
the grey matter model predictions, those for the white matter are slightly better for the low strain rates but
noticeably better for the higher strain rates around 2000/s and 3000/s.

The model-predicted stress-strain curves for white matter over the [-30%,30%] strain range are provided
in Fig. 16. The most obvious observation is that the stress in white matter is much larger than it is in
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Fig. 14: White matter stress-strain data for various strain rates (procine subject); experimental data originally
presented in [66]

grey matter for similar strains, but this could also be observed by comparing Figs. 11 and 14. As with the
grey matter, there is a drastic increase in stress for the small strains. However, unlike the curves for grey
matter, the transition to small increases in stress is not nearly as sharp. Additionally, for positive strain rates,
i.e., those in tension, the curves for white matter evince a more asymptotic behavior with increasing strain.
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various strain rates (procine subject); experimental data originally presented in [66]
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Skin

The skin for the model was treated as a hyper-viscoelastic material. The density of a human scalp is
given in [39] (see Table A4), and a bulk modulus for a combined material of skin and fat is provided by [8].
Since no other bulk modulus for skin was available, the combined bulk modulus is used. The other material
properties necessary for calibrating the hyper-viscoelastic skin model, namely the stress-strain relationships,
come from tests on porcine samples.

The parameters for the skin model were found using test data from two studies, [68] and [69]. However,
one study focused on testing the skin in compression [68] while the other presents results for tensile tests
[69]. The experimental test data from these papers was extracted and aggregated into one larger set, as
shown in Fig. 17, where the negative strain rates denote compressive tests; in order to ensure continuity
around O percent strain, a smoothing filter was applied to the extracted data. Figure 17 exhibits the vast
difference in stress between the compressive and tensile tests, as the compressive stresses are significantly
larger than the tensile stresses; this is true across all strain rates.

The data set used for calibrating the material model was a subset of that shown in Fig. 17 as only the
following strain rates were included: -0.40/s, 0.50/s, -40/s, 1700/s, 2500/s, -4000/s. This subset of six strain
rates was considered representative of the total data set while also providing a necessary focus on higher
strain rates, which are often associated with TBI and blast load modeling. The weight vector for the selected
strain rates was chosen as w = [0.5,1,2,3,1,0.5], placing the greatest weight on the 1700/s data set and the
least weight on the extremes from the compressive testing. The skin was modeled as a hyper-viscoelastic
material with a two-term Ogden series and two-term Prony series. The final parameters produced by the
global search are given in Table A4.

There is not much information to be gleaned from the parameter values themselves, other than the
fact that the skin model does not appear to have any single dominant term. The normalized prediction
error is larger than that for both grey and white matter, but Fig. 18 demonstrates that the overall fit for the
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Fig. 17: Compressive and tensile stress-strain data for porcine skin at various strain rates; experimental data
originally presented in [68] (compression) and [69] (tension)

experimental data is rather strong. For both the compressive and tensile strain rates, the model captures
the general stress behavior. Comparing Figs. 18a and 18b shows that the model more closely follows the
trajectories for the tensile experimental data, but the model still approximates the global behavior of the
compressive experimental data quite well.

Stress-strain curves for various strain rates are plotted in Fig. 19 over a range from —30 percent to 30
percent strain. The main observation from this figure is that a given level of strain produces a much larger
stress for strain rates at or above 100/s; however, the stress-strain curves quickly converge for the higher
strain rates. Also, the stress-strain behavior greatly differs in tension and compression with the compressive
strains resulting in much large stresses. Note that it is highly likely that this is not the true expected behavior;
however, these plots represent the best estimate considering the currently available data.
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Fig. 18: Comparison of experimental stress-strain data and hyper-viscoelastic model for skin for various

strain rates (procine subject); experimental data originally presented in [68] (compression) and [69] (ten-
sion)
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Fig. 19: Model-predicted stress for skin over a strain range of [-30%,30%] for a variety of strain rates
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Heart

The density for the heart model was based on densities reported for skeletal muscle as no data was avail-
able specifically for heart density. The average density of muscle in 4 percent and 37 percent formaldehyde
solutions were reported as 1112 kg/m> and 1055 kg/m?, respectively, [40]; whereas muscle was given a
general density of 1100 kg/m? in [8]. The muscle density chosen for this study was 1060 kg/m?, as shown
in Table A4. Ref. 8 also provides a bulk modulus for muscle of 3.33 MPa.

The experimental data used for the model parameters for the heart comes from a study of the porcine
aortic heart valve [70]. The stress-strain data from those tensile tests is plotted in Fig. 20. As Fig. 20 shows,
the stress-strain data only covers low strain rates. Further, the stress-strain curves display a sudden, albeit
brief, decrease in stress, giving the curves a rather jagged appearance. This sudden decrease was noted by
[70] but not attributed to any specific factor. Prior to optimization it was unknown what effect, if any, these
sudden decreases would have on parameter estimation.
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Fig. 20: Tensile stress-strain data for a porcine arotic valve at various strain rates; experimental data origi-
nally presented in [70]

Since only three data sets were available, all were used when calibrating the model parameters and each
was given equal weight, i.e., w; = 1. The hyper-viscoelastic model for the heart had two terms for both its
Ogden series and Prony series. The parameter values returned by the optimization are given in Table A4.
Interestingly, the values for both & terms are quite large and time constants represent two relative extremes:
a constant greater than unity and the other approaching an infinitesimally small quantity. The normalized
prediction error shown in Table 5 implies relatively accurate predictions, and these are illustrated in Fig. 21.

From Fig. 21 it may be seen that the model predictions closely follow the original experimental stress-
strain curves. Notably, the model could not account for the sudden decrease in stress; the model appears
to offer a more averaged prediction instead. Despite the lack of this particular feature, the model provides
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relatively accurate (and stable) predictions of the stress all the way to 30 percent, the maximum strain
considered.
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Fig. 21: Comparison of experimental stress-strain data and hyper-viscoelastic model for the heart for various
strain rates (procine subject); experimental data originally presented in [70]

Plotting stress-strain curves for various strain rates, as in Fig. 22, reveals that they essentially trace over
one another. The curves in Fig. 21 evinced necessary separation, but those plots were for strain rates below
1/s; once the strain rates reach or surpass 1/s, they have converged to the same trajectory. The reasons for
this are most likely associated with the lack of strain data for higher strain rates, but these higher strain rates
are of interest due to their association with blast loading.
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Fig. 22: Model-predicted stress for the heart over a strain range of [-30%,30%] for a variety of strain rates
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Lungs

The lungs were also modeled as a hyper-viscoelastic material. While [42] offer information about the
Poisson’s ratio of the lungs, v = 0.43, their work contains a limited amount of stress-strain data, data that
originated from the work of [71]. Additional stress-strain data from higher strain rates is available for
porcine lungs in [72].

Specific information about the density was reported in [41]. While [41] provides an exhaustive investi-
gation of lung density before and during general anesthesia with numerous samples collected at several loca-
tions within the lungs, this current study only needs a single value. Therefore a lung density of 0.235 g/cm?
(235 kg/m?) was chosen based on a simple average of the horizontal density profiles for the right and left
lungs. A bulk modulus for the lungs could not be found in the literature.

The model parameters for the lungs were found using experimental data from [42] and [72]. The
experimental data included both tensile [42] and compressive [72] strain rate data sets, as shown in Fig. 23.
Note that the tensile data set was taken from human tissue whereas the compressive experimental data was
from porcine lung tissue. Data coming from disparate sources is an obvious source of potential error, but
for the purposes of this study, these data sets may be considered together.

In terms of the stress-strain curves, one important observation is that the stress magnitudes between the
tensile and compressive data sets differ by one or two orders of magnitude. This problem was similarly en-
countered for the skin tissue but did not ultimately lead to any problems with the optimization. Additionally,
the behavior of the lung tissue differs between being in tension or compression, as the tensile data show a
near linear relationship between stress and strain, but the compressive data is significantly more nonlinear.

3r 0
2- .
> -50
T 27 <
3 g -100
@ 15+ 9
£ 2150
n 1r %)
—A—_1300/s
05¢ -200 —=—_2000/s
-3000/s
0 ‘ ‘ ‘ | 250 ‘ ‘ ‘ |
0 20 40 60 80 -80 -60 -40 -20 0
Strain (%) Strain (%)
(a) Tensile strain rates (human subject) (b) Compressive strain rates (porcine subject)

Fig. 23: Compressive and tensile stress-strain data for lung tissue (human and porcine) at various strain
rates; experimental data originally presented in [42] (tension) and [72] (compression)
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The material model for the lungs included a two-term Ogden model and a two-term Prony series. Prior
to optimization, the four data sets shown in Fig. 23 were given the following weighting vector w = [1,3,2,1]
corresponding to the strain rates of [0.04/s, —1300/s, —2000/s, —3000/s]; as with other materials, the
data for the strain rate closest to 1000/s was given the greatest weight and, thus, largest influence on the
optimization. The optimal parameter values are shown in Table A4. It should be noted that the lungs
proved especially difficult to model as two optimization trials could result in predictions errors close to 1,
i.e., = 100% error, and 1500, i.e., = 150,000% error; the results shown in Table A4 (with the associated
prediction error in Table 5) came after only a few trials. The difficulties associated with the optimization of
these biomaterials was previously discussed at length; however, the uniquely challenging case for the lung
tissue merits special mention.

The individual parameters for the lung model are not particularly noteworthy with the exception of the
more equal “weight” of the Prony terms with g; = 0.5802 and g, = 0.4187. Most of the materials discussed
previously showed a much greater imbalance in their modulus ratios. However, the relative balance for this
case did not contribute to a particularly accurate result as the normalized prediction error was 47.53 percent.
Figure 24 illustrates this larger error as the model-predicted stress-strain curve for the tensile strain rate is too
linear and the model predictions for the compressive strain rates begin to diverge from their experimental
curves for large strains. The stress-strain curve for the —1300/s strain rate is closely followed along its
trajectory, but it was given the greatest weight during optimization. Overall, the model parameters for the
lung tissue provide an effective and reasonably accurate prediction of the experimental data.
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Fig. 24: Comparison of experimental stress-strain data and hyper-viscoelastic model for lung tissue for
various strain rates (both human and procine subjects); experimental data originally presented [42] (tension)
and [72] (compression)

The stress-strain behavior for several strain rates is plotted in Fig. 25 over a range spanning —30 percent
to 30 percent strain. These plots demonstrate the rather consistent behavior of the lung model for increasing
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strains and strain rates. As the strain rates increase, the curves in Fig. 25 exhibit a steady progression; the
curve for 1000/s produces the largest stresses for a given strain, without displaying any obvious signs of
convergence. Also, Fig.25 provides more evidence for a trend previously observed for the white matter
model, and to a lesser extent for the skin model, that tensile strains lead to an asymptotic increase in stress
but compressive strains lead to a continual increase in stress.

Stress (kPa)

-30 -20 -10 0 10 20 30
Strain (%)

Fig. 25: Model-predicted stress for the lungs over a strain range of [-30%,30%] for a variety of strain rates

Muscles

As was detailed for the modeling of the heart, muscle density was given in [40] as ranging between 1055
kg/m? and 1112 kg/m? depending on formaldehyde concentration and was given in [8] as 1100 kg/m>. As
with the heart material model, a density of 1060 kg/m® was chosen for muscle. Ref. 8 also provided a bulk
modulus for muscle of 3.33 MPa, which is the same as was used for the heart.

Data for modeling the muscles came from both [73] and [74]; as with previous model components,
two data sources were consulted because one provided strain data in compression [73] and the other in
tension [74]. Across the two data sources, ten distinct strain rates were tested, spanning the very slow rates
(—0.007/s) to the very fast (—3700/s), and the stress-strain curves for all of these strain rates are plotted
in Fig. 26. As has been observed previously, the compressive stresses are larger in magnitude their tensile
counterparts for similar strains. In addition, the tensile stresses evince some asymptotic behavior with
increasing strains beyond 20-30 percent, whereas the compressive strains exhibit no such behavior. The two
data sets also appear to have a relatively smooth transition through O percent strain for low strain rates; the
transition is much more abrupt for higher strain rates.

Given that there was such a large collection of data, not all were included in the calibration of the model
parameters. The chosen weighting vector was w =[0.5, 0, 1, 0, 3, 2, 1, 1.5, 0, 0], which included six
data sets: —0.007/s, —0.07/s, —540/s, 700/s, 1400/s, and —1900/s. Using the selected data sets, the global
search algorithm was used to find the optimal parameters. The final parameters are given in Table A4 and
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Fig. 26: Compressive and Tensile stress-strain data for porcine muscle at various strain rates; experimental
data originally presented in [73] (compression) and [74] (tension)

the normalized prediction error is listed in Table 5. The error is rather large, but this is likely due to the
somewhat incongruous tensile and compressive data sets.

Figures 27 and 28 elucidate some differences between the two data sets that cannot be as readily observed
in Fig. 26. For instance, the behavior of the tensile data changes more significantly with increasing strain
rate; the compressive data seems to exhibit a steady progression with increasing strain rate, but the tensile
data set is not nearly as consistent. A brief investigation was conducted in order to better quantify this
inconsistency; another trial for global search was run without including any tensile data, i.e., w; = O for
all tensile data sets including 700/s and 1400/s. This resulted in a normalized prediction error of less than
5 percent (O = 0.0450) and produced model predictions there were incredibly close to the experimental
compressive data. However, if those model parameters were used in conjunction with the original weighting
vector that included two tensile data sets, the prediction error ballooned to 2.1876.

This shows that omitting the tensile data could lower the error during optimization but would ultimately
lead to a worse fit for the overall data set. Figures 27 and 28 demonstrate the model predictions produced
with parameters in Table A4 produced reasonable estimates for the tensile data and relatively accurate es-
timates for the compressive data; this was especially true for the lower strain rates. Even though the result
shown in Table 5 boasts an error in excess of 100 percent, the plots comparing the model predictions to the
experimental data reveal that the estimates are of much higher quality that the bulk error measure would
imply.

Plotting stress-strain curves across compressive and tensile strains, as in Fig. 29, demonstrates that the
model for the muscle tissue responds similarly in tension and compression. Unlike some of the other ma-
terials, the muscle model does not exhibit any asymptotic behavior, in either tension or compression. The
curves in Fig. 29 also do not show any signs of convergence, and the separation in curves over strain rate
decades appears to grow as the curves for 1/s and 100/s are much closer than those for 100/s and 1000/s.
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Fig. 27: Comparison of experimental stress-strain data and hyper-viscoelastic model for porcine muscle in
tension at various strain rates; experimental data originally presented in [74]
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Fig. 28: Comparison of experimental stress-strain data and hyper-viscoelastic model for porcine muscle in
compressive at various strain rates; experimental data originally presented in [74]
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Fig. 29: Model-predicted stress for muscle tissue over a strain range of [-30%,30%] for a variety of strain
rates
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Adipose

No bulk properties for adipose tissue were found in the literature; however, [8] presents a bulk modulus
for the skin and fat of a human, and that bulk modulus is adapted for modeling the adipose tissue in this
study. The density of skin and fat is also presented in [8] as 1040 kg/rn3, but [39] asserts the density of skin
as 1200 kg/m?; this study adopts the more dense estimate.

The data for fitting the model comes from tests on porcine adipose tissue [75] that offer a trove of data
for modeling adipose tissue. The study in [75] contains several compressive stress-strain curves spanning
decades of strain rates. A small sample of curves were extracted from their work and used for developing
the adipose tissue in the model; these chosen stress-strain curves are shown in Fig.30. As with some of
the other materials, the high strain rates, i.e., those above 1000/s, are accompanied by orders-of-magnitude
increases in stress as compared to the lower strain rate data, but the increases for this material are much more
extreme. As an example, an increase in strain rate from 250/s to 2100/s leads to the stress increasing from
about 4 kPa to 2500 kPa at 30 percent strain, but this same massive increase is not observed when the strain
rates increase from 25/s to 250/s. This nonlinearity makes adipose tissue a much more challenging material
to model. However, Fig. 30 also shows that, relative to magnitudes, the stress behavior remains relatively
consistent across all strain rates.
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Fig. 30: Adipose tissue compressive stress-strain data for various strain rates (procine subject); experimental
data originally presented in [75]

The model for adipose tissue consisted of a two-term Ogden model and two-term Prony series. Among
the seven data sets shown in the Fig. 30, five were given non-zero weights in the chosen weight vector
w=[1,1,2,4,2,0,0] that corresponds to strain rates of —0.2/s, —2.3/s, —25/s, —250/s, —2100/s, —3600/s,
and —4400/s, respectively. The optimal parameter results from the global search are given in Table A4.
Notably, the global search produced essentially the same estimate for both ¢; parameters (these parameters
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differ in the thousandths place). This degree of similarity could potentially allow for the two terms to be
combined, but, more importantly, the lack of uniqueness implies that two terms may not be necessary for
the Ogden model.

The error for the optimization, as given in Table 5 is large but consistent with some of the more challeng-
ing materials to model. However, Fig. 31 reveals that this model could not capture both the low strain rate
and high strain rate behavior. The model predictions for the lower strain rate data in Fig. 31a closely follow
their respective experimental data curves, providing sound estimates. While the high strain rate data was
only given modest weight during the optimization, the model demonstrated a complete inability to capture
its behavior. This is not entirely surprising given the extreme (and nonlinear) increase in stress for the higher
strain rates. It should be noted that a few different weighting schemes were attempted and additional opti-
mization trials were conducted but none produced any better result; it is acknowledged that these additional
trials were far from exhaustive, but they still considered several viable alternatives.
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Fig. 31: Comparison of experimental stress-strain data and hyper-viscoelastic model for adipose tissue for
various strain rates in compression (procine subject); experimental data originally presented in [75]

Plots of model-predicted stresses for assorted strain rates over strains ranging from —30 percent to 30
percent are shown in Fig. 32. This figure demonstrates that an increase in strain rate from 100/s to 1000/s
is accompanied by a substantial increase in stress, especially in tension, but these increases do not span
enough orders of magnitude; this can be explained, however, by the lack of a nonlinear viscoelasticity in
the model. This figure also exhibits the sharp transition between tension and compression around O percent
strain, similar to that observed for the model of grey matter. Generally speaking, the model of the adipose
tissue appears to be highly accurate and useful for strain rates ranging from 0.1/s to 250/s (and perhaps
greater), but the insufficiency for strain rates at or above 2000/s has been clearly demonstrated.
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Table 5: Final Cost Function Values for the Hyper-

Viscoelastic Materials

Component o

Grey Matter | 1.0554
White Matter | 0.5216
Skin 1.9197
Heart 0.3968
Lungs 1.5646
Muscle 3.3177
Adipose 3.2977

4. SUMMARY

This report details the steps taken to calibrate the

material models incorporated into a computational

model of a human head and the upper torso and head of a pig. A summary of some common constitutive

model forms used to simulate the mechanical behavior
Us—U, equation of state and hyperelastic, visco-elastic,

of biological materials has been given, namely the
and hyper-viscoelastic models. Additionally, uniax-

ial stress relationships have been derived for each model to easily relate constitutive model parameters to
common experimental data forms. The optimization scheme employed for estimating the optimal constitu-
tive model parameter values has been detailed. This optimization scheme minimizes the difference between
uniaxial experimental data and model-predicted uniaxial stress.
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The derived constitutive models and optimization method were implemented to calibrate parameters
for each biological material identified in the greater model. The experimental data for each material was
obtained from the available literature. Many of the models showed good agreement with their respective
experimental data sets. Generally speaking, the models for the hyperelastic materials produced predictions
that most closely approximated their respective experimental data. Bone was treated as the only purely
viscoelastic material, and a single model calibration was used to find the appropriate model parameters.
This was done because the generic model could be linearly scaled to match the different bone materials,
e.g., cortical versus cancellous, present in the model. Some of the more challenging cases included those
hyper-viscoelastic materials with separate data sets for tensile and compressive stress in which the behavior
greatly differed between tension and compression, e.g., skin and muscle.

Many of the data sets utilized for this study represented a compromise as they possessed the necessary
information to completely calibrate a constitutive model but avoided the difficulty that comes with combin-
ing or concatenating data from different sources. For instance, the calibration of a viscous material is better
accomplished using dynamic material analysis, which is available for some biomaterials. However, large
strain behavior is not captured by this test, and the superposition of two different tests further complicates
the constitutive model calibration. Even the data chosen as a compromise is still not ideal, as many data sets
are missing crucial decades of strain rate data, often in the range spanning 10/s to 100/s.

The hyper-viscoelastic materials were limited to models with a two-term Ogden series and two-term
Prony series, but a more in-depth investigation should be conducted to determine the optimal number of
terms for each material. In addition, the sensitivity of the different constitutive model parameters with
respect to the model prediction error should also be a focus of future studies. The uncertainty associated with
individual model parameters and their relationship to the larger uncertainty of the optimal model predictions
must also be addressed. Another possible consideration for future work is the weight vectors applied to
some of the larger data sets; these weights were chosen heuristically for the study, with preference given to
those closest to expected strain rates for blast loading, but the impact of choosing different subsets of data
and how those subsets are weighted should receive more consideration in the future. Further, only a single
optimization method was presented here; however, many more exist, each with its own merits, and they
should be investigated to determine if a particular scheme is better than that used here.

The purpose of this study is to provide a generalized framework for modeling biomaterials across many
strain rates and data sources. In addition, the culmination of this study produced a set of comprehensive
tables for computational modelers to quickly reference for future model development. However, this work
is by no means a final product; rather, this work is a reflection of available data. It is intended for these
material models to incorporate more data as it becomes available. Additionally, it is expected that future
modelers will consider other data sets and strain rates that better reflect the threats, loading, or insults of
primary concern to them. In this way, it is hoped that this report becomes both a template and starting point
for future efforts in biomechanical modeling.
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Table Al: Material Properties and Model Parameters for Components Modeled via Equations of State

Component Constitutive Model Material Properties and Model Parameters ~ Sources
Sinuses and Airway (Air) Ideal gas equation of state (with viscosity) p = 1.1455 kg/m?
R =1287.058 J/(kg-°K)
pa = 101.325 kPa
{=19.2x107% Pa-s
CSF and Ventricles (CSF), and  U;—U,, equation of state p = 1000 kg/m? [22, 23]
Venous Sinus and Bridging co = 1480 m/s
Vein Fluid (Blood) s=1.79
I'p=1.65
£ =0.7 mPa-s
Hyperelastic (neo-Hookean) Cip=11.27kPa [8]
D; =9.13x 107! GPa™!
Eyes (Vitreous) Us—U,, equation of state p =950 kg/m3 [22, 24]
co = 1450 m/s
s=1.79
I'p=1.65
{ =5Pas
Hyperelastic (neo-Hookean) Cio=3.8x107° MPa [57]
D; =1GPa™!
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Table A2: Material Properties and Model Parameters for Components Treated as Hyperelastic Materials

Component

Constitutive Model

Material Properties and Model Parameters

Sources

Bridging Vein Walls

Pia Mater

Dura Mater

Falx and Tentorium

Sclera

Intervertebral Discs

Costal Cartilage

Anisotropic Hyperelastic
(Holzapfel-Gasser-Ogden model)

Hyperelastic (2-term Ogden model)

Hyperelastic (2-term Ogden model)

Hyperelastic (2-term Ogden model)

Hyperelastic (2-term Ogden model)

Hyperelastic (Mooney-Rivlin model)

Hyperelastic (2-term Ogden model)

p = 1000 kg/m?
120 pm thickness
c="17.64 kPa

k1 =996.6 kPa
ky =524.6

Kk =0.333

p = 1130 kg/m?

20 pum thickness

Uy = —6.41 x 105, uy = 1.00 x 107
o = —16.57, op = —24.29

p = 1130 kg/m?

550 pm thickness

U = —3.58 x 105, up, = 4.57 x 10°
o) = 11.84, oy = 16.90

p = 1130 kg/m?

U1 =9.77 x 10°, ur = 2.56 x 10°
o =23.51, p =23.22

p = 1130 kg/m?

850 pum thickness

Uy =—1.27x10°, uy =3.70 x 10
o = 14.84, oy = 16.53

p = 1200 kg/m?

C10 =0.18 MPa, C01 = 0.045 MPa
v =045

p = 1240 kg/m?

W = 8.05x10°, g = —5.35 x 10°
oy =—1.01, ap = 3.65

[25, 26]

[27, 28]

[28, 29]
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Table A3: Material Properties and Model Parameters for Components Treated as Viscoelastic Materials

Component Constitutive Model Material Properties and Model Parameters ~ Sources
Cortical Skull Bone Transversely Isotropic Viscoelastic p = 1841 kg/m? [34]
E3z =11.8 GPa; Ey, E, = 16.65 GPa
G12 =64 GPa; G13, G23 =4.25 GPa
vio = 0.30; Vi3, V23 = 0.3975; V31, V32 = 0.32
Cancellous Skull Bone Transversely Isotropic Viscoelastic p = 100 kg/m? [35, 36]
E; =375 MPa; E, E; =530 MPa
G12 =204 MPa; G13, G23 =135 MPa
Vi = 0.30; Vi3, Vo3 = 0.3975; V31, V3o = 0.32
Vertebrae Viscoelastic p = 485.4 kg/m? [32]
E =3273 MPa
v =0.30
Ribs Viscoelastic p = 1841 kg/m? [34, 38]
E =9 GPa
v =0.30
Sternum Viscoelastic p = 485.4 kg/m? [32]
E =3273 MPa
v =0.30
Cortical Bone Model®  2-term Prony series E =20.2 GPa [62]
v =0.30
g1 =0.4838, g» =0.1336
71 =1.32x1075, 7, =6.00 x 102
Mandible Transversely Isotropic Viscoelastic  p = 1925 kg/m? [37]

(2-term Prony series)

E; =12.7 GPa; E|, E, =20.35 GPa

G12 =74 GPa; G13, G23 =5.25GPa

vip = 0.375; Vi3, Vo3 = 0.39; V31, V32 = 0.245
g1 = 0.1336, g, = 0.4838

71 =6.00x 1072, 7, = 1.32 x 1073

2 These model parameters were used for all viscoelastic bone materials, except for the mandible, with the ratio of elastic moduli (Ematerial/Emodel)

used for scaling.
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Table A4: Material Properties and Model Parameters for Components Treated as Hyper-viscoelastic Materials

Component Constitutive Model Material Properties and Model Parameters Sources
Grey Matter — Cereburm and Hyper-viscoelastic  p = 1040 kg/m? [8]
Cerebellum (2-term Ogden, Uy =6.74 x 10°, oy = 10.18, ur = 9.08 x 10°, oy = 2.74
2-term Prony) g1 =0.0019, 7 = 1.79 x 107!, g, = 0.9980, 7, = 3.14 x 10~/
White Matter — Cereburm and Hyper-viscoelastic  p = 1040 kg/m? [8]
Cerebellum, Brain Stem, Spinal (2-term Ogden, Uy =6.90 x 10°, 0y = 4.13, y = —9.47 x 10*, ap = 6.37
Cord, Optic Nerves 2-term Prony) g1 =0.8070, 7 =2.40 x 107>, g, = 0.1861, 7, = 1.31 x 10~/
Skin Hyper-viscoelastic ~ p = 1200 kg/m? [8,39]
(2-term Ogden, Ko = 34.7 MPa
2-term Prony) =111 x10%, a; = —11.59, ur = 4.48 x 103, ap = 11.38
g1 =0.8453, 7, =1.54x107%, g, = 0.1421, 7, = 1.70 x 1073
Heart Hyper-viscoelastic ~ p = 1060 kg/m? [8, 40]
(2-term Ogden, Ko = 3.33 MPa
2-term Prony) py =4.15x10°, o = 15.58, ur = 3.85 x 10°, o, = 11.51
g1 =0.2209, 7 = 5.99 x 10, g» = 0.7537, 7 = 3.22 x 10710
Lungs Hyper-viscoelastic ~ p = 235 kg/m? [41, 42]
(2-term Ogden, v =043
2-term Prony) p=—8.95x10% oy = —1.32, tp =2.11 x 10°, 0, =2.41
g1 =0.5802, 7 = 1.14x 1077, g, = 0.4187, 7, = 6.07 x 10~°
Muscle Hyper-viscoelastic ~ p = 1060 kg/m? [8, 40]
(2-term Ogden, Ko = 3.33 MPa
2-term Prony) Uy =—1.36x10%, o; = —0.84, ur =2.49 x 10°, o = 3.36
g1 =0.5312, 7, =4.21 x 107>, g = 0.4298, 70 = 7.95 x 1076
Adipose Tissue Hyper-viscoelastic ~ p = 1200 kg/m? [8,39]

(2-term Ogden,
2-term Prony)

Ko =34.7 MPa
ty =3.79x 10°, oy = 13.53, pp = 2.68 x 10°, o, = 13.53
g1 =0.8141, 7, =2.77x 10712, gp = 0.1851, »p = 3.45x 10~°
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